Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 53, 2023 - Issue 18
283
Views
2
CrossRef citations to date
0
Altmetric
Articles

One-pot protocol for the reductive amination of aldehydes using thiamine hydrochloride as a green catalyst under solvent-free condition

, , , , &
Pages 1545-1558 | Received 15 May 2023, Published online: 20 Jul 2023

References

  • (a) Czarnik, A. W. Special Issue on Combinatorial Chemistry. Acc. Chem. Res. 1996, 29, 112–113. DOI: 10.1021/ar950256n. (b) Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.; Buchwald, S. L. Rational Development of Practical Catalysts for Aromatic Carbon-Nitrogen Bond Formation. Acc. Chem. Res. 1998, 31, 805–818. DOI: 10.1021/ar9600650. (c) Nugent, T.; El-Shazly, M. Chiral Amine Synthesis-Recent Developments and Trends for Enamide Reduction, Reductive Amination, and Imine Reduction. Adv. Synth. Catal. 2010, 352, 753–819. DOI: 10.1002/adsc.200900719.
  • Patil S. A Review on Oxadiazole Derivatives and Their Biological Activities. IJPR. 2017, 13, 317.
  • (a) Fleury-Bregeot, N.; De La Fuente, V.; Castillon, S.; Claver, C. Highlights of Transition Metal-Catalyzed Asymmetric Hydrogenation of Imines. ChemCatChem. 2010, 2, 1346–1371. DOI: 10.1002/cctc.201000078. (b) Xie, J.; Zhu, S.; Zhou, Q. Transition Metal-Catalyzed Enantioselective Hydrogenation of Enamines and Imines. Chem. Rev. 2011, 111, 1713–1760. DOI: 10.1021/cr100218m. (c)Tripathi, R.; Verma, S.; Pandey, J.; Tiwari, V. Recent Development on Catalytic Reductive Amination and Applications Tiwari. COC 200.8, 12, 1093–1115. DOI: 10.2174/138527208785740283.
  • (a) Yamane, Y.; Liu, X.; Hamasaki, A.; Ishida, T.; Haruta, M.; Yokoyama, T.; Tokunaga, M. One-Pot Synthesis of Indoles and Aniline Derivatives from Nitroarenes under Hydrogenation Condition with Supported Gold Nanoparticles. Org Lett. 2009, 11, 5162–5165. DOI: 10.1021/ol902061j. (b) Gnanamgari, D.; Moores, A.; Rajaseelan, E.; Crabtree, R. Transfer Hydrogenation of Imines and Alkenes and Direct Reductive Amination of Aldehydes Catalyzed by Triazole-Derived Iridium (I) Carbene Complexes. Organometallics. 2007, 26, 1226–1230. DOI: 10.1021/om060938m. (c) Imao, D.; Fujihara, S.; Yamamoto, T.; Ohta, T.; Ito, Y. Ito, Effective Reductive Amination of Carbonyl Compounds with Hydrogen Catalyzed by Iridium Complex in Organic Solvent and in Ionic Liquid. Tetrahedron. 2005, 61, 6988–6992. DOI: 10.1016/j.tet.2005.05.024. (d) Tararov, V. I.; Kadyrov, R.; Börner, A.; Riermeier, T. H. On the Reductive Amination of Aldehydes and Ketones Catalyzed by Homogeneous Rh(i) Complexes. Chem. Commun. 2000, 1867–1868. DOI: 10.1039/b005777k. (e) Byun, E.; Hong, B.; De Castro, K.; Lim, M.; Rhee, H. One-Pot Reductive Mono-N-Alkylation of Aniline and Nitroarene Derivatives Using Aldehydes. J. Org. Chem. 2007, 72, 9815–9817. DOI: 10.1021/jo701503q. (f) Sreedhar, B.; Reddy, P.; Devi, D. Direct One-Pot Reductive Amination of Aldehydes with Nitroarenes in a Domino Fashion: Catalysis by Gum-Acacia-Stabilized Palladium Nanoparticles. J. Org. Chem. 2009, 74, 8806–8809. DOI: 10.1021/jo901787t. (g) Robichaud, A.; Nait Ajjou, A. First Example of Direct Reductive Amination of Aldehydes with Primary and Secondary Amines Catalyzed by Water-Soluble Transition Metal Catalysts. Tetrahedron Lett. 2006, 47, 3633–3636. DOI: 10.1016/j.tetlet.2006.03.153. (h) Li, B.; Sortais, J.; Darcel, C.; Dixneuf, P. Amine Synthesis through Mild Catalytic Hydrosilylation of Imines Using Polymethylhydroxysiloxane and [RuCl2(Arene)]2 Catalysts. ChemSusChem. 2012, 5, 396–399. DOI: 10.1002/cssc.201100585. (i) Hu, L.; Cao, X.; Ge, D.; Hong, H.; Guo, Z.; Chen, L.; Sun, X.; Tang, J.; Zheng, J.; Lu, J.; Gu, H. Ultrathin Platinum Nanowire Catalysts for Direct C-N Coupling of Carbonyls with Aromatic Nitro Compounds under 1 Bar of Hydrogen. Chemistry. 2011, 17, 14283–14287. DOI: 10.1002/chem.201100818.
  • Kumar, N.; Reddy, B.; Reddy, V.; Bandichhor, R. Iron Triflate Catalyzed Reductive Amination of Aldehydes Using Sodium Borohydride. Tetrahedron Lett. 2012, 53, 4354–4356. DOI: 10.1016/j.tetlet.2012.06.018.
  • Tarasevich, V.; Kozlov, N. Reductive Amination of Oxygen-Containing Organic Compounds Russ. Chem. Rev. 1999, 68, 55.
  • Shibata, I.; Suwa, T.; Sugiyama, E.; Baba, A. Dibutyltin Chloride Hydride Complex as a Novel Reductant for Chemoselective Reductive Amination. Synlett. 1998, 1998, 1081–1082. DOI: 10.1055/s-1998-1895.
  • Hiroi, R.; Miyoshi, N.; Wada, M. Solvent-Free One-Pot Reduction of Imines Generated in Situ from Aldehydes and Aniline by Tributyltin Hydride on Silica Gel. Chem. Lett. 2002, 31, 274–275. DOI: 10.1246/cl.2002.274.
  • Suwa, T.; Shibata, I.; Nishino, K.; Baba, A. 199, Synthesis of Nitrogen Heterocycles by Intramolecular Michael Type of Amination via Reduction of Imines with Di-n-Butyliodotin Hydride (n-Bu2SnIH). Org. Lett. 1999, 1, 1579–1581. DOI: 10.1021/ol990225i.
  • Reddy, S.; Kanjilal, S.; Sunitha, S.; Prasad, S. Reductive Amination of Carbonyl Compounds Using NaBH4 in a Brønsted Acidic Ionic Liquid. Tetrahedron Lett. 2007, 48, 8807–8810. DOI: 10.1016/j.tetlet.2007.10.094.
  • Nose, A.; Kudo, T. Selective Reduction of Imines with the Diborane-Methanol System. Chem. Pharm. Bull. 1986, 34, 4817–4820. DOI: 10.1248/cpb.34.4817.
  • Abdel-Magid, A. F.; Carson, K. G.; Harris, B. D.; Maryanoff, C. A.; Shah, R. D. Reductive Amination of Aldehydes and Ketones with Sodium Triacetoxyborohydride. Studies on Direct and Indirect Reductive Amination Procedures. J. Org. Chem. 1996, 61, 3849–3862. DOI: 10.1021/jo960057x.
  • Ramachandran, V.; Gagare, D.; Sakavuyi, K.; Clark, P. Reductive Amination Using Ammonia Borane. Tetrahedron Lett. 2010, 51, 3167–3169. DOI: 10.1016/j.tetlet.2010.04.014.
  • Lai, R.; Lee, C.; Liu, S. One-Pot Reductive Amination of Aldehydes Catalyzed by a Hydrio-Iridium(III) Complex in Aqueous Medium. Tetrahedron. 2008, 64, 1213–1217. DOI: 10.1016/j.tet.2007.11.079.
  • Chandrasekhar, S.; Reddy, M.; Chandraiah, L. Inexpensive Protocol for Reduction of Imines to Amines Using Polymethylhydrosiloxane (PMHS). Synth. Commun. 1999, 29, 3981–3987. DOI: 10.1080/00397919908085918.
  • Chandrasekhar, S.; Reddy, C.; Ahmed, M. A Single Step Reductive Amination of Carbonyl Compounds with Polymethyl hydrosiloxane-Ti (OiPr)4. Synlett. 2000, 1655.
  • Kumar, V.; Sharma, S.; Sharma, U.; Singh, B.; Kumar, N. Synthesis of Substituted Amines and Isoindolinones: catalytic Reductive Amination Using Abundantly Available AlCl3/PMHS. Green Chem. 2012, 14, 3410. DOI: 10.1039/c2gc36305d.
  • Bhattacharyya, S.; Chatterjee, A.; Williamson, J. Reductive Amination with Zinc Borohydride. Efficient, Safe Route to Fluorinated Benzylamines. Synth. Commun. 1997, 27, 4265–4274. DOI: 10.1080/00397919708005050.
  • Kotsuki, H.; Yoshimura, N.; Kadota, I.; Ushio, Y.; Ochi, M. A Mild Reduction of Azomethines with Zinc Borohydride. Synthetic Application to Tandem Alkylation-Reduction of Nitriles. Synthesis. 1990, 1990, 401–402. DOI: 10.1055/s-1990-26886.
  • Mićović, I. V.; Ivanović, M. D.; Piatak, D. M.; Bojić, V. D. A Simple Method for Preparation of Secondary Aromatic Amines. Synthesis. 1991, 1991, 1043–1045. DOI: 10.1055/s-1991-26642.
  • Ranu, B.; Majee, A.; Sarkar, A. One-Pot Reductive Amination of Conjugated Aldehydes and Ketones with Silica Gel and Zinc Borohydride. J. Org. Chem. 1998, 63, 370–373. DOI: 10.1021/jo971117h.
  • Itsuno, S.; Sakurai, Y.; Ito, K. Reduction of Some Functional Groups with Zirconium Tetrachloride/Sodium Borohydride. Synthesis. 1988, 1988, 995–996. DOI: 10.1055/s-1988-27782.
  • Varma, R.; Dahiya, R. Sodium Borohydride on Wet Clay: Solvent-Free Reductive Amination of Carbonyl Compounds Using Microwaves. Tetrahedron. 1998, 54, 6293–6298. DOI: 10.1016/S0040-4020(98)00326-3.
  • Verardo, G.; Giumanini, A.; Strazzolini, P.; Poiana, M. Reductive N-Monoalkylation of Primary Aromatic Amines. Synthesis. 1993, 1993, 121–125. DOI: 10.1055/s-1993-25813.
  • Salmi, C.; Letourneux, Y.; Brunel, J. Efficient Synthesis of Various Secondary Amines through a Titanium (IV) isopropoxide-Mediated Reductive Amination of Ketones. LOC. 2006, 3, 396–401. DOI: 10.2174/157017806776611845.
  • Cho, B.; Kang, S. Direct and Indirect Reductive Amination of Aldehydes and Ketones with Solid Acid-Activated Sodium Borohydride under Solvent-Free Conditions. Tetrahedron. 2005, 61, 5725–5734. DOI: 10.1016/j.tet.2005.04.039.
  • Akbar, H.; Afsaneh, A.; Maryam, E. Direct Reductive Amination of Aldehydes and Selective Reduction of α, β-Unsaturated Carbonyl Compounds by NaBH4 in the Presence of Guanidine Hydrochloride in Water. J. Mol. Catal. A-Chem. 2007, 274, 169–172.
  • Heydari, A.; Khaksar, S.; Akbari, J.; Esfandyari, M.; Pourayoubi, M.; Tajbakhsh, M. Direct Reductive Amination and Selective 1, 2-Reduction of α, β-Unsaturated Aldehydes and Ketones by NaBH4 Using H3PW12O40 as Catalyst. Tetrahedron Lett. 2007, 48, 1135–1138. DOI: 10.1016/j.tetlet.2006.12.069.
  • Cabral, S.; Hulin, B.; Kawai, M. Lithium Borohydride: A Reagent of Choice for the Selective Reductive Amination of Cyclohexanones. Tetrahedron Lett. 2007, 48, 7134–7136. DOI: 10.1016/j.tetlet.2007.07.217.
  • Gutierrez, C.; Bavetsias, V.; McDonald, E. TiCl(OiPr)3 and NaBH(OAc)3: An Efficient Reagent Combination for the Reductive Amination of Aldehydes by Electron-Deficient Amines. Tetrahedron Lett. 2005, 46, 3595–3597. DOI: 10.1016/j.tetlet.2005.02.155.
  • Sato, S.; Sakamoto, T.; Miyazawa, E.; Kikugawa, Y. One-Pot Reductive Amination of Aldehydes and Ketones with a-Picoline-Borane in Methanol, in Water, and in Neat Conditions. Tetrahedron. 2004, 60, 7899–7906. DOI: 10.1016/j.tet.2004.06.045.
  • Periasamy, M.; Devasagayaraj, A.; Satyanarayana, N.; Narayana, C. Synthesis of Amines by Reduction of Imines with the MCl2/NaBH4 (M = Co, Ni) System. Synth. Commun. 1989, 19, 565–573. DOI: 10.1080/00397918908050701.
  • Pelter, A.; Rosser, R.; Mills, S. Reductive Aminations of Ketones and Aldehydes Using Borane–Pyridine. J. Chem. Soc., Perkin Trans. 1984, 01, 717–720. DOI: 10.1039/P19840000717.
  • Prajapti, S.; Nagarsenkar, A.; Bathini, B. Tris(Pentafluorophenyl)Borane Catalyzed Acylation of Alcohols, Phenols, Amines, and Thiophenols under Solvent-Free Condition. Tetrahedron Lett. 2014, 55, 1784–1787. DOI: 10.1016/j.tetlet.2014.01.124.
  • Prajapti, S.; Nagarsenkar, A.; Bathini, B. An Efficient Synthesis of 5-Substituted 1H-Tetrazoles via B(C6F5)3 Catalyzed [3 + 2] Cycloaddition of Nitriles and Sodium Azide. Tetrahedron Lett. 2014, 55, 3507–3510. DOI: 10.1016/j.tetlet.2014.04.089.
  • Patil, S. M.; Tandon, R.; Tandon, N.; Singh, I.; Bedre, A.; Gade, V. Magnetite-Supported Montmorillonite (K10) (nanocat-Fe-Si-K10): an Efficient Green Catalyst for Multicomponent Synthesis of Amidoalkyl Naphthol. RSC Adv. 2023, 13, 17051–17061. DOI: 10.1039/d3ra01522j.
  • (a)Lenardão, E. J.; Trecha, D. O.; Ferreira, P. d C.; Jacob, R. G.; Perin, G. Green Michael Addition of Thiols to Electron Deficient Alkenes Using KF/Alumina and Recyclable Solvent or Solvent-Free Conditions. J. Braz. Chem. Soc. 2009, 20, 93–99. DOI: 10.1590/S0103-50532009000100016. (b) Lenardão, E. J.; Silva, M. S.; Sachini, M.; Lara, R. G.; Jacob, R. G.; Perin, G. Synthesis of Alkenyl Selenides and Tellurides Using PEG-400. Arkivoc. 2009, 2009, 221–227. DOI: 10.3998/ark.5550190.0010.b19. (c) Perin, G.; Mello, L.; Radatz, C.; Savegnago, L.; Alves, D.; Jacob, R.; Lenardao, E. Glycerol as a Promoting Medium for Cross-Coupling Reactions of Diaryl Diselenides with Vinyl Bromides. Tetrahedron Lett. 2010, 51, 4354–4356. DOI: 10.1016/j.tetlet.2010.06.049.
  • (a) Radatz, C.; Silva, R.; Perin, G.; Lenardao, E.; Jacob, R.; Alves, D. Catalyst-Free Synthesis of Benzodiazepines and Benzimidazoles Using Glycerol as Recyclable Solvent. Tetrahedron Lett. 2011, 52, 4132–4136. DOI: 10.1016/j.tetlet.2011.05.142. (b) Perin, G.; Mello, L.; Radatz, C.; Savegnago, L.; Alves, D.; Jacob, R.; Lenardao, E. Green, Catalyst-Free Thioacetalization of Carbonyl Compounds Using Glycerol as Recyclable Solvent. Tetrahedron Lett. 2010, 51, 4354–4356. DOI: 10.1016/j.tetlet.2010.06.049. (c) Goncalves, L.; Fiss, G.; Perin, G.; Alves, D.; Jacob, R.; Lenardao, E. Glycerol as a Promoting Medium for Cross-Coupling Reactions of Diaryl Diselenides with Vinyl Bromides. Tetrahedron Lett. 2010, 51, 6772–6775. DOI: 10.1016/j.tetlet.2010.10.107. (d) Nascime-Ment, J.; Barcellos, A.; Sachini, M.; Perin, G.; Lenardao, E.; Alves, D.; Jacob, R.; Missau, F. Catalyst-Free Synthesis of Octahydroacridines Using Glycerol as Recyclable Solvent. Tetrahedron Lett. 2011, 52, 2571–2574. DOI: 10.1016/j.tetlet.2011.03.045. (e) Bachhav, H.; Bhagat, S.; Telvekar, V. Efficient Protocol for the Synthesis of Quinoxaline, Benzoxazole and Benzimidazole Derivatives Using Glycerol as Green Solvent. Tetrahedron Lett. 2011, 52, 5697–5701. DOI: 10.1016/j.tetlet.2011.08.105. (f) Wolfson, A.; Litvak, G.; Dlugy, C.; Shotland, Y.; Tavor, D. Employing Crude Glycerol from Biodiesel Production as an Alternative Green Reaction Medium. Ind. Crop Prod. 2009, 30, 78–81. DOI: 10.1016/j.indcrop.2009.01.008.
  • (a) Nelson, W. M. Green Solvents for Chemistry: Perspectives and Practice; Oxford University Press: Oxford, 2003. (b) Pagliarao, M.; Rossi, M. Future of Glycerol: New Usages for a Versatile Raw Material. RSC Green Chemistry Series; Clark, J. H., Kraus, G. A., Eds.; Cambridge, 2008.
  • Patil, S.; Bedre, A.; Gade, V. Manohar Jopale Metal-Free, an Effective and One-Pot Protocol for the Reductive Amination of Aldehydes Using Glycerol as a Green Solvent. J. Chem. Sci. 2023, 135, 50. DOI: 10.1007/s12039-023-02172-3.
  • (a) Ingale, A.; Patil, S.; Shinde, S. Catalyst-Free, Efficient and One Pot Protocol for Synthesis of Nitriles from Aldehydes Using Glycerol as Green Solvent. Tetrahedron Lett. 2017, 58, 4845–4848. DOI: 10.1016/j.tetlet.2017.11.032. (b) Patil, S.; Tandon, R.; Tandon, N. Synthesis and Characterization of Fe3O4@SiO2@K10 NPs Applicable for N-Ter-Butyloxycarbonylation Using Solvent-Free Conditions. J. Phys.: Conf. Ser. 2022, 2267, 012107. DOI: 10.1088/1742-6596/2267/1/012107. (c) Tandon, R.; Tandon, N.; Patil, S. Overview on Magnetically Recyclable Ferrite Nanoparticles: synthesis and Their Applications in Coupling and Multicomponent Reactions. RSC Adv. 2021, 11, 29333–29353. DOI: 10.1039/D1RA03874E. (d) Tandon, R.; Patil, S.; Tandon, N.; Kumar, P. Magnetically Recyclable Silica-Coated Magnetite-Molybdate Nanocatalyst and Its Applications in N-Formylation Reactions under Solvent-Free Conditions. LOC. 2022, 19, 616–626. (e) Patil, S.; Tandon, R.; Tandon, N. A Current Research on Silica Coated Ferrite Nanoparticle and Their Application: Review. Curr. Res. Green Sustain. Chem. 2021, 4, 100063. DOI: 10.1016/j.crgsc.2021.100063. (f) Tandon, N.; Patil, S.; Tandon, R.; Kumar, P. Magnetically Recyclable Silica-Coated Ferrite magnetite-K10 Montmorillonite Nanocatalyst and Its Applications in O, N, and S-Acylation Reaction under Solvent-Free Conditions. RSC Adv. 2021, 11, 21291–21300. DOI: 10.1039/d1ra02222a.
  • Sheng, M.; Fujita, S.; Yamaguchi, S.; Yamasaki, J.; Nakajima, K.; Yamazoe, S.; Mizugaki, T.; Mitsudome, T. Single-Crystal Cobalt Phosphide Nanorods as a High-Performance Catalyst for Reductive Amination of Carbonyl Compounds. JACS Au. 2021, 1, 501–507. DOI: 10.1021/jacsau.1c00125.
  • Patil, S.; Tandon, R.; Tandon, N. Recent Developments in Silver Nanoparticles Utilized for Cancer Treatment and Diagnosis: A Patent Review. Pharm. Pat. Anal. 2022, 11, 175–186. DOI: 10.4155/ppa-2022-0010.
  • Patil, S.; Ingale, A.; Pise, A.; Bhondave, R. Novel Cobalt-Supported Silica-Coated Ferrite Nanoparticles Applicable for Acylation of Amine, Phenol, and Thiols Derivatives under Solvent-Free Condition. Chem. Select 2022, 7, e202201590.
  • Ingale, A.; More, V.; Gangarde, U.; Shinde, S. Chemoselective N-Tert-Butyloxycarbonylation of Amines in Glycerol. New J. Chem. 2018, 42, 10142–10147. DOI: 10.1039/C8NJ01585F.
  • Mathavan, S.; Kannan, K.; Yamajala, R. B. R. D. Thiamine Hydrochloride as a Recyclable Organocatalyst for the Synthesis of Bis(Indolyl)Methanes, Tris(Indolyl)Methanes, 3,3-di(Indol-3-yl)Indolin-2-Ones and Biscoumarins. Org. Biomol. Chem. 2019, 17, 9620–9626. DOI: 10.1039/c9ob02090j.
  • Zhu, X.; Zhou, X.; Zhang, W. One-Pot Reductive Amination of Araldehydes by Aniline Using Borohydride with CeCl3.7H2O as Catalyst. J. Chem. Res. 2015, 39, 390–393. DOI: 10.3184/174751915X14356747417290.
  • Patil, S.; Tandon, R.; Tandon, N. Magnetically Recoverable Silica-Decorated Ferromagnetic-Nano-Ceria Nanocatalysts and Their Use with O and N-Butyloxycarbonylation Reaction via Solvent-Free Condition. ACS Omega. 2022, 7, 24190–24201. DOI: 10.1021/acsomega.2c01107.
  • Nagarsenlar, A.; Prajapati, S. K.; Bathini, N. B. An Efficient Catalytic Reductive Amination: A Facile One-Pot Access to 1, 2-Dihydropyrrolo [3,4-b]Indol-3(4H)-Ones by Using B(C6 F5)3/NaBH4. J. Chem. Sci. 2015, 127, 711–716. DOI: 10.1007/s12039-015-0825-y.
  • Hamadi, H.; Javadi, S. One-Pot Reductive Amination of Carbonyl Compounds with NaBH4-B(OSO3 H)3/SiO2 in Acetonitrile and in Solvent-Free Condition. J. Chem. Sci. 2017, 129, 75–80. DOI: 10.1007/s12039-016-1208-8.
  • Zhang, H.; Liu, Y.; Zhang, L.; Wang, X.; Sun, H.; Liu, C.; Ye, J.; Cheng, R. Direct Reductive Amination from Ketones, Aldehydes to Synthesize Amines Using N, S-Dual Doped Co/C Catalyst. Catal. Lett. 2022, 152, 3586–3593. DOI: 10.1007/s10562-021-03911-2.
  • Deng, J.; Mo, L.-P.; Zhao, F.-Y.; Hou, L.-L.; Yang, L.; Zhang, Z.-H. Sulfonic Acid Supported on Hydroxyapatite-Encapsulated-γ-Fe2O3nanocrystallites as a Magnetically Separable Catalyst for One-Pot Reductive Amination of Carbonyl Compounds. Green Chem. 2011, 13, 2576. DOI: 10.1039/c1gc15470b.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.