Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 53, 2023 - Issue 22
162
Views
1
CrossRef citations to date
0
Altmetric
Articles

A convenient approach for the synthesis of 4,4'-((substituted phenyl)methylene)bis(3-methyl-1H-pyrazol-5-ol) and their antioxidant and antimicrobial activities

, ORCID Icon, ORCID Icon, ORCID Icon, &
Pages 1886-1901 | Received 22 Jun 2023, Published online: 13 Sep 2023

References

  • (a) Kabir, E.; Uzzaman, M. A Review on Biological and Medicinal Impact of Heterocyclic Compounds. Results Chem. 2022, 4, 100606. DOI: 10.1016/j.rechem.2022.100606.; (b) Mlostoń, H. G. Heterocycles in Materials Chemistry. Chem. Heterocycl. Comp. 2017, 53, 1. doi:10.1007/s10593-017-2013-0. (c) Frank, É.; Szőllősi, G. Nitrogen-Containing Heterocycles as Significant Molecular Scaffolds for Medicinal and Other Applications. Molecules. 2021, 26, 4617. doi:10.3390/molecules26154617.
  • (a) Sharma, Kamlesh, Kumar, Himanshi, Priyanka,. Formation of Nitrogen-Containing Six-Membered Heterocycles on Steroidal Ring System: A Review, Steroids. 2023, 191, 109171. DOI: 10.1016/j.steroids.2022.109171.; (b) Heravi, M. M.; Zadsirjan, V. Prescribed Drugs Containing Nitrogen Heterocycles: An Overview. RSC Adv. 2020, 10, 44247–44311. doi:10.1039/D0RA09198G.; (c) Baumann, M.; Baxendale, I. R.; Steven, V.; Leyand, S. V.; Nikbin, N. An Overview of the Key Routes to the Best Selling 5-Membered Ring Heterocyclic Pharmaceuticals. Beilstein J. Org. Chem. 2011, 7, 442–495. doi:10.3762/bjoc.7.57.
  • (a) Barraza, S. J.; Denmark, S. E. Synthesis, Reactivity, Functionalization, and ADMET Properties of Silicon-Containing Nitrogen Heterocycles. J. Am. Chem. Soc. 2018, 140, 6668–6684. DOI: 10.1021/jacs.8b03187.; (b) Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K. K.; Jonnalagadda, S. B. A Review on Recent Advances in Nitrogen-Containing Molecules and Their Biological Applications. Molecules. 2020, 25, 25–1909. doi:10.3390/molecules25081909.
  • (a) Naim, M. J.; Alam, O.; Nawaz, F.; Alam, M. J.; Alam, P. Current Status of Pyrazole and Its Biological Activities. J. Pharm. Bioallied Sci. 2016, 8, 2–17. DOI: 10.4103/0975-7406.171694.; (b) Pursuwani, B. H.; Bhatt, B. S.; Raval, D. B.; Thakkar, V. R.; Sharma, J.; Pathak, C.; Patel, M. N. Synthesis, Characterization and Biological Applications of Pyrazole Moiety Bearing Osmium(IV) Complexes. Nucleosides Nucleotides Nucleic Acids. 2021, 40, 593–618. doi:10.1080/15257770.2021.1921795.
  • (a) Saleh, N. M.; El-Gazzar, M. G.; Aly, H. M.; Othman, R. A. Novel Anticancer Fused Pyrazole Derivatives as EGFR and VEGFR-2 Dual TK Inhibitors. Front. Chem. 2019, 7, 917. DOI: 10.3389/fchem.2019.00917.; (b) Hassan, A. S.; Moustafa, G. O.; Awad, H. M.; Nossier, E. S.; Mady, M. F. Design, Synthesis, Anticancer Evaluation, Enzymatic Assays, and a Molecular Modeling Study of Novel Pyrazole-Indole Hybrids. ACS Omega. 2021, 6, 12361–12374. doi:10.1021/acsomega.1c01604.
  • (a) Rashad, A. E.; Hegab, M. I.; Abdel-Megeid, R. E.; Micky, J. A.; Abdel-Megeid, F. M. E. Synthesis and Antiviral Evaluation of Some New Pyrazole and Fused Pyrazolopyrimidine Derivatives. Bioorg. Med. Chem. 2008, 16, 7102–7106. DOI: 10.1016/j.bmc.2008.06.054.; (b) Yang, Z.; Li, P.; Gan, X. Novel Pyrazole-Hydrazone Derivatives Containing an Isoxazole Moiety: Design, Synthesis, and Antiviral Activity. Molecules. 2018, 23, 1798. doi:10.3390/molecules23071798.
  • (a) Bhatt, H. B.; Sharma, S. Synthesis and Antimicrobial Activity of Pyrazole Nucleus Containing 2-Thioxothiazolidin-4-One Derivatives. Arabian J. Chem. 2017, 10, S1590–S1596. DOI: 10.1016/j.arabjc.2013.05.029.; (b) Saadon, K. E.; Taha, N. M. H.; Mahmoud, N. A.; Elhagali, G. A. M.; Ragab, A. Synthesis, Characterization, and in Vitro Antibacterial Activity of Some New Pyridinone and Pyrazole Derivatives with Some in Silico ADME and Molecular Modeling Study. J. Iran Chem. Soc. 2022, 19, 3899–3917. doi:10.1007/s13738-022-02575-y.
  • (a)Yu, B.; Zhou, S.; Cao, L.; Hao, Z.; Yang, D.; Guo, X.; Zhang, N.; Bakulev, V. A.; Fan, Z. Design, Synthesis and Evaluation of the Antifungal Activity of Novel Pyrazole-Thiazole Carboxamides as Succinate Dehydrogenase Inhibitors. J. Agric. Food Chem. 2020, 68, 7093–7102. DOI: 10.1021/acs.jafc.0c00062.; (b) Liu, X.-R.; Wu, H.; He, Z.-Y.; Ma, Z.-Q.; Feng, J.-T.; Zhang, X.; Xing, Z. Design, Synthesis and Fungicidal Activities of Some Novel Pyrazole Derivatives. Molecules. 2014, 19, 14036–14051. doi:10.3390/molecules190914036.
  • Fadda, A. A.; Refat, H. M.; Mohamed, N. A.; Aal, M. T. A. Synthesis and Antioxidant of Some New Pyrazolo[1,5-a]Pyrimidine, Pyrazolo[5,1-b]Quinazoline and Imidazo[1,2-b]Pyrazole Derivatives Incorporating Phenylsulfonyl Moiety. Appl. Nano BioSci. 2021, 10, 2414–2428. DOI: 10.33263/LIANBS103.24142428.
  • (a) Kaplancıklı, Z. A.; Ozdemir, A.; Turan-Zitouni, G.; Altıntop, M. D.; Can, O. D. New Pyrazoline Derivatives and Their Antidepressant Activity. Eur. J. Med. Chem. 2010, 45, 4383–4387. DOI: 10.1016/j.ejmech.2010.06.011.; (b) Ozdemir, A.; Altıntop, M. D.; Kaplancıklı, Z. A.; Can, O. D.; Ozkay, U. D.; Turan-Zitouni, G. Synthesis and Evaluation of New 1,5-Diaryl-3-[4-(Methyl-Sulfonyl)Phenyl]-4,5-Dihydro-1H-Pyrazole Derivatives as Potential Antidepressant Agents. Molecules. 2015, 20, 2668–2684. doi:10.3390/molecules20022668.
  • (a) Mantzanidou, M.; Pontiki, E.; Hadjipavlou-Litina, D. Pyrazoles and Pyrazolines as Anti-Inflammatory Agents. Molecules. 2021, 26, 3439. DOI: 10.3390/molecules26113439.; (b) Hassan, G. S.; Rahman, D. E. A.; Abdelmajeed, E. A.; Refaey, R. H.; Salem, M. A.; Nissan, Y. M. New Pyrazole Derivatives: Synthesis, Anti-Inflammatory Activity, Cycloxygenase Inhibition Assay and Evaluation of mPGES. Eur. J. Med. Chem. 2019, 171, 332–342. doi:10.1016/j.ejmech.2019.03.052.
  • Viciano-Chumillas, M.; Tanase, S.; de Jongh, L. J.; Reedijk, J. Coordination Versatility of Pyrazole-Based Ligands towards High-Nuclearity Transition-Metal and Rare-Earth Clusters. Eur. J. Inorg. Chem. 2010, 2010, 3403–3418. DOI: 10.1002/ejic.201000412.
  • (a) Ferraro, V.; Genesin, L.; Castro, J.; Pietrobon, L.; Vavasori, A.; Bortoluzzi, M. J. Organometallic Palladium(II) Complexes with N-((Pyridin-2-yl)Methylene)-4-Amino-2,1,3-Benzothiadiazole: Synthesis, Characterization and Reactivity. Organometal. Chem. 2023, 993, 122711. DOI: 10.1016/j.jorganchem.2023.122711.; (b) Khanvilkar, P.; Dash, S. R.; Banerjee, D.; Vohra, A.; Devkar, R.; Chakraborty, D.; Organoruthenium (I. I.) Complexes Featuring Pyrazole-Linked Thiosemicarbazone Ligands: Synthesis, DNA/BSA Interactions, Molecular Docking, and Cytotoxicity Studies. Appl. Organom. Chem. 2021, 35, e6343. doi:10.1002/aoc.6343.; (c). Varma, R. R.; Pandya, J. G.; Vaidya, F. U.; Pathak, C.; Bhatt, B. S.; Patel, M. N. Synthesis, Characterization and Biological Application of Pyrazolo[1,5-a]Pyrimidine Based Organometallic Re(I) Complexes. Acta Chim. Slov. 2020, 67, 957–969. doi:10.17344/acsi.2020.6017.
  • (a) Khaligh, N. G.; Mihankhah, T.; Gorjian, H.; Johan, M. R. Greener and Facile Synthesis of 4,4′-(Arylmethylene)Bis(3-Methyl-1-Phenyl-1H-Pyrazol-5-ol)s through a Conventional Heating Procedure. Synth. Commun. 2020, 50, 3276–3286. DOI: 10.1080/00397911.2020.1799014.; (b) Ghanbarpour, A.; Khazaei, A.; Moosavi-Zare, A. R.; Akbarpour, T.; Mohammadi, M.; Sarmasti, N. Synthesis of 4,4'-(Aryl Methylene)Bis(3-Methyl-1H-Pyrazol-5-ol) Derivatives and Pyrano[2, 3-c] Pyrazole Derivatives Using an Engineered Copper-Based Nano-Magnetic Catalyst Fe3O4@SiO2/Si(OEt)(CH2)3NH/CC/EDA/Cu(OAc)2. Polycycl. Arom. Comp. 2023, 43, 3192–3215. doi:10.1080/10406638.2022.2067192.; (c) Ramesh, R.; Nagasundaram, N.; Meignanasundar, D.; Vadivel, P.; Lalitha, A. Glycerol Assisted Eco-Friendly Strategy for the Facile Synthesis of 4,4′-(Arylmethylene)Bis(3-Methyl-1H-Pyrazol-5-Ols) and 2-Aryl-2,3-Dihydroquinazolin-4(1H)-Ones under Catalyst-Free Conditions. Res. Chem. Intermed. 2017, 43, 1767–1782. doi:10.1007/s11164-016-2728-z.
  • (a).Safaei-Ghomi, J.; Shahbazi-Alavi, H.; Ziarati, A. A Multi-Component Reaction for Direct Access to 4,4’-(Phenylmethylene)Bis(1H-Pyrazol-5-ol)-3-Carboxylates Using Nano-NiZr4(PO4)6 in Water. Scientia. Iranica C. 2018, 0, 0–0. DOI: 10.24200/sci.2018.5606.1371.; (b) Cadena-Cruz, J. E.; Guamán-Ortiz, L. M.; Romero-Benavides, J. C.; Bailon-Moscoso, N.; Murillo-Sotomayor, K. E.; Ortiz-Guamán, N. V.; Heredia-Moya, J. Synthesis of 4,4′-(Arylmethylene)Bis(3-Methyl-1-Phenyl-1H-Pyrazol-5-Ols) and Evaluation of Their Antioxidant and Anticancer Activities. BMC Chem. 2021, 15, 38. doi:10.1186/s13065-021-00765-y.
  • (a) Meera, G.; Rohit, K. R.; Saranya, S.; Anilkumar, G. Microwave Assisted Synthesis of Five Membered Nitrogen Heterocycles. RSC Adv. 2020, 10, 36031–36041.; (b) Henary, M.; Kananda, C.; Rotolo, L.; Savino, B.; Owens, E. A.; Cravotto, G. Benefits and Applications of Microwave-Assisted Synthesis of Nitrogen Containing Heterocycles in Medicinal Chemistry. RSC Adv. 2020, 10, 14170–14197. DOI: 10.1039/D0RA01378A.; (c) Kumar, A.; Kuang, Y.; Liang, Z.; Sun, X. Microwave Chemistry, Recent Advancements and Eco-Friendly Microwave-Assisted Synthesis of Nanoarchitectures and Their Applications: A Review. Mater. Today Nano. 2020, 11, 100076. doi:10.1016/j.mtnano.2020.100076. doi:10.1039/D0RA05150K.
  • (a). Hemalatha, K.; Madhumitha, G.; Kajbafvala, A.; Anupama, N.; Sompalle, R.; Roopan, S. M. Function of Nanocatalyst in Chemistry of Organic Compounds Revolution: An Overview. J. Nanomat. 2013, 2013, 1–23. DOI: 10.1155/2013/341015.; (b). Khalid, K.; Tan, X.; Zaid, H. F. M.; Tao, Y.; Chew, C. L.; Dinh-Toi, C.; Lam, M. K.; Yeek-Chia, H.; Lim, J. W.; Weip, L. C. Advanced in Developmental Organic and Inorganic Nanomaterial: A Review. Bioengineered. 2020, 11, 328–355. doi:10.1080/21655979.2020.1736240.
  • (a) Wang, S.; Wang, Z.; Zha, Z. Metal Nanoparticles or Metal Oxide Nanoparticles, an Efficient and Promising Family of Novel Heterogeneous Catalysts in Organic Synthesis. Dalton Trans. 2009, 2009, 9363–9373; DOI: https://doi.org/10.1039/B913539A (b) Astruc, D. Introduction: Nanoparticles in Catalysis. Chem. Rev. 2020, 120, 461–463. DOI: https://doi.org/10.1021/acs.chemrev.8b00696.
  • (a).Wang, A.; Quan, W.; Zhang, H.; Li, H.; Yang, S. Heterogeneous ZnO-Containing Catalysts for Efficient Biodiesel Production. RSC Adv. 2021, 11, 20465–20478.; (b) Banerjee, B. Recent Developments on Nano-ZnO Catalyzed Synthesis of Bioactive Heterocycles. J. Nanostruct. Chem. 2017, 7, 389–413. DOI: 10.1007/s40097-017-0247-0. doi:10.1039/D1RA03158A.
  • (a). Mirzaei, H.; Darroudi, M. Zinc Oxide Nanoparticles: Biological Synthesis and Biomedical Applications. Ceramics Intern. 2017, 43, 907–914. DOI: 10.1016/j.ceramint.2016.10.051.; (b) Wiesmann, N.; Tremel, W.; Brieger, J. Zinc Oxide Nanoparticles for Therapeutic Purposes in Cancer Medicine. J. Mater. Chem. B. 2020, 8, 4973–4989. doi:10.1039/D0TB00739K.; (c) Foud, A.; Hassan, S. E.; Salem, S. S.; Shaheen, T. I. In-Vitro Cytotoxicity, Antibacterial and UV Protection Properties of the Biosynthesized Zinc Oxide Nanoparticles for Medical Textile Applications. Microb. Pathog. 2018, 125, 252–261. doi:10.1016/j.micpath.2018.09.030.
  • (a) Mohan, G.; Santhisudha, S.; Reddy, N. M.; Sreekanth, T.; Murali, S.; Reddy, C. S. Nano ZnO Catalyzed Green Synthesis and Cytotoxic Assay of Pyridinyl and Pyrimidinyl Bisphosphonates. Monatsh Chem. 2017, 148, 1843–1851. DOI: 10.1007/s00706-017-2000-2.; (b) Mohamed, Y. M. A.; Attia, Y. A. The Influence of Ultrasonic Irradiation on Catalytic Performance of ZnO Nanoparticles toward the Synthesis of Chiral 1-Substituted-1H-Tetrazolederivatives from α-Amino Acid Ethyl Esters. Appl. Organomet. Chem. 2020, 34, e5758. doi:10.1002/aoc.5758.; (c) Phukan, P.; Agarwal, S.; Deori, K.; Sarma, D. Zinc Oxide Nanoparticles Catalysed One-Pot Three-Component Reaction: A Facile Synthesis of 4-Aryl-NH-1,2,3-Triazoles. Catal. Lett. 2020, 150, 2208–2219. doi:10.1007/s10562-020-03143-w.
  • (a) Hosseini-Sarvari, M. Catalytic Organic Reactions on ZnO. Curr. Org. COS. 2013, 10, 697–723. DOI: 10.2174/1570179411310050003.; (b) Soliman, M. M.; Karmakar, A. A.; Alegria, E. C. B. A.; Ribeir, A. P. C.; Rúbio, G. M. D. M.; Saraiva, M. S.; Guedes da Silva, M. F.; Pombeiro, A. J. L. ZnO Nanoparticles: An Efficient Catalyst for Transesterification Reaction of α-Keto Carboxylic Esters. Catal. Today. 2020, 348, 72–79. doi:10.1016/j.cattod.2019.08.053.; (c) Narimani, H. Research on Synthesis of Heterocyclic Structures Using ZnO NPs as Catalyst. J. Synth. Chem. 2022, 1, 62–83. doi:10.22034/jsc.2022.155232.
  • Choi, C. W.; Kim, S. C.; Hwang, S. S.; Choi, B. K.; Ahn, H. J.; Lee, M. Y.; Park, S. H.; Kim, S. K. Antioxidant Activity and Free Radical Scavenging Capacity between Korean Medicinal Plants and Flavonoids by Assay-Guided Comparison. Plant. Sci. 2002, 163, 1161–1168. DOI: 10.1016/S0168-9452(02)00332-1.
  • Winston, G. W.; Livingstone, D. R.; Lips, F. Oxygen Reduction Metabolism by the Digestive Gland of the Common Marine Mussel, Mytilus Edulis L. J. Exp. Zool. 1990, 255, 296–308. DOI: 10.1002/jez.1402550307.
  • Shirwaikar, A.; Shirwaikar, A.; Rajendran, K.; Punitha, I. S. R. In Vitro Antioxidant Studies on the Benzyl Tetra Isoquinoline Alkaloid Berberine. Biol. Pharm. Bull. 2006, 29, 1906–1910. DOI: 10.1248/bpb.29.1906.
  • Ngamsurach, P.; Praipipat, P. Antibacterial Activities against Staphylococcus aureus and Escherichia coli of Extracted Piper Betle Leaf Materials by Disc Diffusion Assay and Batch Experiments. RSC Adv. 2022, 12, 26435–26454. DOI: 10.1039/D2RA04611C.
  • Singh, J.; Zaman, M. K.; Gupta, A. K. Evaluation of Microdilution and Disk Diffusion Methods for Antifungal Susceptibility Testing of Dermatophytes. Med. Mycol. 2007, 45, 595–602. DOI: 10.1080/13693780701549364.
  • Ostrosky, E. A.; Mizumoto, M. K.; Lima, M. E. L.; Kaneko, T. M.; Nishikawa, S. O.; Freitas, B. R. Methods for Evaluation of the Antimicrobial Activity and Determination of Minimum Inhibitory Concentration (MIC) of Plant Extracts. Rev. Bras. Farmacogn. 2008, 18, 301–307. DOI: 10.1590/S0102-695X2008000200026.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.