Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 54, 2024 - Issue 1
272
Views
0
CrossRef citations to date
0
Altmetric
Articles

Base promoted coupling of α-ketoacids and 2-substituted aromatic amines: Green synthesis of diverse benzoxazoles, benzothiazoles, quinoxalinones and benzoxazinones and its practical application

, &
Pages 50-65 | Received 01 Aug 2023, Published online: 15 Nov 2023

References

  • Rudi, A.; Erez, Y.; Benayahu, Y.; Kashman, Y. Omriolide A and B; Two New Rearranged Spongian Diterpenes from the Marine Sponge Dictyodendrilla Aff. Retiara. Tetrahedron Lett. 2005, 46, 8613–8616. DOI: 10.1016/j.tetlet.2005.09.047.
  • Rudi, A.; Shmul, G.; Benayahu, Y.; Kashman, Y. Sinularectin, A New Diterpenoid from the Soft Coral Sinularia Erecta. Tetrahedron Lett. 2006, 47, 2937–2939. DOI: 10.1016/j.tetlet.2006.02.118.
  • Arora, P.; Arora, V. H.; Lamba, S.; Wadhwa, D. Importance of Heterocyclic Chemistry: A Review. Int. J. Pharm. Sci. Res. 2012, 3, 2947–2954. DOI: 10.13040/IJPSR.0975-8232.3(9).2947-54.
  • Czarnik, A. W. Guest Editorial. Acc. Chem. Res. 1996, 29, 112–113. DOI: 10.1021/ar950256n.
  • Bergquist, P. R.; Bowden, B. F.; Cambie, R. C.; Craw, P. A.; Karuso, P.; Poiner, A.; Taylor, W. The Constituents of Marine Sponges. VI. Diterpenoid Metabolites of the New Zealand Sponge Chelonaplysilla Violacea. Aust. J. Chem. 1993, 46, 623–632. DOI: 10.1071/CH9930623.
  • Carmely, S.; Cojocaru, M.; Loya, Y.; Kashman, Y. Ten New Rearranged Spongian Diterpenes from Two Dysidea Species. J. Org. Chem. 1988, 53, 4801–4807. DOI: 10.1021/jo00255a026.
  • Rudi, A.; Kashman, Y. Six New Alkaloids from the Purple Red Sea Tunicate Eudistoma sp. J. Org. Chem. 1989, 54, 5331–5337. DOI: 10.1021/jo00283a029.
  • Taylor, W. C.; Toth, S. The Constituents of Marine Sponges. VIII Minor Diterpenoid Metabolites of Aplysilla Rosea and A. var. Sulphurea. Aust. J. Chem. 1997, 50, 895–902. DOI: 10.1071/C96166.
  • Yadav, K. P.; Rahman, M. A.; Nishad, S.; Maurya, S. K.; Anas, M.; Mujahid, M. Synthesis and Biological Activities of Benzothiazole Derivatives: A Review. Int. Pharm. 2023, 1, 122–132. DOI: 10.1016/j.ipha.2023.06.001.
  • Kaur, A.; Wakode, S.; Pathak, D. P. Benzoxazole: The Molecule of Diverse Pharmacological Importance. Int. J. Pharm. Pharm. Sci 2015, 7, 16–23.
  • Ramli, Y.; Moussaif, A.; Karrouchi, K.; Essassi, E. M. Pharmacological Profile of Quinoxalinone. J. Chem. 2014, 2014, 1–21. DOI: 10.1155/2014/563406.
  • Sicker, D.; Frey, M.; Schulz, M.; Gierl, A. Role of Natural Benzoxazinones in the Survival Strategy of Plants. Int. Rev. Cytol. 2000, 198, 319–346. DOI: 10.1016/s0074-7696(00)98008-2.
  • Sicker, D.; Schulz, M. Benzoxazinones in Plants: Occurrence, Synthetic Access, and Biological Activity. Stud. Nat. Prod. Chem. 2002, 27, 185–232. DOI: 10.1016/S1572-5995(02)80037-0.
  • Shelkar, R.; Sarode, S.; Nagarkar, J. Nano Ceria Catalyzed Synthesis of Substituted Benzimidazole, Benzothiazole, and Benzoxazole in Aqueous Media. Tetrahedron Lett. 2013, 54, 6986–6990. DOI: 10.1016/j.tetlet.2013.09.092.
  • Bahrami, K.; Khodaei, M. M.; Naali, F. Mild and Highly Efficient Method for the Synthesis of 2-Arylbenzimidazoles and 2-Arylbenzothiazoles. J. Org. Chem. 2008, 73, 6835–6837. DOI: 10.1021/jo8010232.
  • Wade, A. R.; Pawar, H. R.; Biware, M. V.; Chikate, R. C. Synergism in Semiconducting Nanocomposites: visible Light Photocatalysis towards the Formation of C–S and C–N Bonds. Green Chem. 2015, 17, 3879–3888. DOI: 10.1039/C5GC00748H.
  • Nguyen, T. T.; Nguyen, X. T. T.; Nguyen, T. L. H.; Tran, P. H. Synthesis of Benzoxazoles, Benzimidazoles and Benzothiazoles Using a Brønsted Acidic Ionic Liquid Gel as an Efficient Heterogeneous Catalyst under a Solvent-Free Condition. ACS Omega. 2019, 4, 368–373. DOI: 10.1021/acsomega.8b02932.
  • Le, H. A. N.; Nguyen, L. H.; Nguyen, Q. N. B.; Nguyen, H. T.; Nguyen, K. Q.; Tran, P. H. Straightforward Synthesis of Benzoxazoles and Benzothiazoles via Photocatalytic Radical Cyclization of 2-Substituted Anilines with Aldehydes. Catal. Commun. 2020, 145, 106120. DOI: 10.1016/j.catcom.2020.106120.
  • Nguyen, H. T.; Nguyen, T. H.; Pham, D. D.; Nguyen, C. T.; Tran, P. H. A Green Approach for the Synthesis of 2-Substituted Benzoxazoles and Benzothiazoles via Coupling/Cyclization Reactions. Heliyon. 2021, 7, e08309. DOI: 10.1016/j.heliyon.2021.e08309.
  • Putta, R. R.; Chun, S.; Choi, S. H.; Lee, S. B.; Oh, D. C.; Hong, S. Iron(0)-Catalyzed Transfer Hydrogenative Condensation of Nitroarenes with Alcohols: A Straightforward Approach to Benzoxazoles, Benzothiazoles and Benzimidazoles. J. Org. Chem. 2020, 85, 15396–15405. DOI: 10.1021/acs.joc.0c02191.
  • Mayo, M. S.; Yu, X.; Zhou, X.; Feng, X.; Yamamoto, Y.; Bao, M. Convenient Synthesis of Benzothiazoles and Benzimidazoles through Brønsted Acid Catalyzed Cyclization of 2-Amino Thiophenols/Anilines with β-Diketones. Org. Lett. 2014, 16, 764–767. DOI: 10.1021/ol403475v.
  • Nikpassand, M.; Fekri, L. Z.; Farokhian, P. An Efficient and Green Synthesis of Novel Benzoxazole under Ultrasound Irradiation. Ultrason. Sonochem. 2016, 28, 341–345. DOI: 10.1016/j.ultsonch.2015.08.014.
  • Báez, E. V. G.; Martínez, I. I. P.; Cach, F. T.; Cruz, A. Benzothiazoles from Condensation of o-Aminothiophenoles with Carboxylic Acids and Their Derivatives: A Review. Molecules. 2021, 26, 6518. DOI: 10.3390/molecules26216518.
  • Monga, A.; Bagchi, S.; Soni, R. K.; Sharma, A. Synthesis of Benzothiazoles via Photooxidative Decarboxylation of α-Keto Acids. Adv. Synth. Catal. 2020, 362, 2232–2237. DOI: 10.1002/adsc.201901617.
  • Liu, J.; Liu, Q.; Yi, H.; Qin, C.; Bai, R.; Qi, X.; Lan, Y.; Lei, A. Visible-Light-Mediated Decarboxylation/Oxidative Amidation of α-Keto Acids with Amines under Mild Reaction Conditions Using O2. Angew. Chem. Int. Ed. Engl. 2014, 53, 502–506. DOI: 10.1002/anie.201308614.
  • Penteado, F.; Vieira, M. M.; Perin, G.; Alves, D.; Jacob, R. G.; Santi, C.; Lenardao, E. J. Niobium-Promoted Reaction of α-Phenylglyoxylic Acid with Ortho-Functionalized Anilines: synthesis of 2-Arylbenzothiazoles and 3-Aryl-2H-Benzo[b][1,4]Benzoxazin-2-Ones. Green Chem. 2016, 18, 6675–6680. DOI: 10.1039/C6GC02495E.
  • Wang, H.-B.; Huang, J.-M. Decarboxylative Coupling of α‐Keto Acids with Ortho‐Phenylenediamines Promoted by an Electrochemical Method in Aqueous Media. Adv. Synth. Catal. 2016, 358, 1975–1981. DOI: 10.1002/adsc.201501167.
  • Yuan, X.; Liu, Y.; Qin, M.; Yang, X.; Chen, B. Elemental Sulfur Participates in the Decarboxylative Coupling of Oxidized 2-Aminophenol and Phenylglyoxylic Acid. ChemistrySelect. 2018, 3, 5541–5543. DOI: 10.1002/slct.201800874.
  • Laha, J. K.; Patel, K. V.; Tummalapalli, K. S. S.; Dayal, N. Formation of Amides, Their Intramolecular Reactions for the Synthesis of N-Heterocycles, and Preparation of a Marketed Drug, Sildenafil: A Comprehensive Coverage. Chem. Commun. 2016, 52, 10245–10248. DOI: 10.1039/C6CC04259G.
  • Xu, X. L.; Xu, W. T.; Wu, J. W.; He, J. B.; Xu, H. J. Silver-Promoted Decarboxylative Amidation of α-Keto Acids with Amines. Org. Biomol. Chem. 2016, 14, 9970–9973. DOI: 10.1039/C6OB01963C.
  • Yang, D.; Yan, K.; Wei, W.; Tian, L.; Shuai, Y.; Li, R.; You, J.; Wang, H. One-Pot Copper-Catalyzed Aerobic Decarboxylative Coupling of Phenylacetic Acids with o-Aminobenzenes and Dioxygen as the Oxidant Leading to Benzoxazoles and Benzothiazoles. Asian J. Org. Chem. 2014, 3, 969–973. DOI: 10.1002/ajoc.201402085.
  • Laha, J. K.; Hunjan, M. K. K2S2O8 Activation by Glucose at Room Temperature for the Synthesis and Functionalization of Heterocycles in Water. Chem. Commun. 2021, 57, 8437–8440. DOI: 10.1039/D1CC03777C.
  • Petronijevic, J.; Jankovic, N.; Bugarcic, Z. Synthesis of Quinoxaline-Based Compounds and Their Antitumor and Antiviral Potentials. MROC. 2018, 15, 220–226. DOI: 10.2174/1570193X14666171201143357.
  • Nagaraj, N.; Sathiyamoorthy, S.; Boominathan, M.; Muthusubramanian, S.; Bhuvanesh, N. An Efficient Synthetic Protocol for Quinoxalinones, Benzoxazinones, and Benzothiazinones from 2-Oxo-2-Aryl-Acetyl Bromide Precursors. J. Heterocyc. Chem. 2013, 50, 1146–1151. DOI: 10.1002/jhet.1557.
  • Imanishi, M.; Sonoda, M.; Miyazato, H.; Sugimoto, K.; Akagawa, M.; Tanimori, S. Sequential Synthesis, Olfactory Properties, and Biological Activity of Quinoxaline Derivatives. ACS Omega. 2017, 2, 1875–1885. DOI: 10.1021/acsomega.7b00124.
  • Tanimori, S.; Nishimura, T.; Kirihata, M. Synthesis of Novel Quinoxaline Derivatives and Its Cytotoxic Activities. Bioorg. Med. Chem. Lett. 2009, 19, 4119–4121. DOI: 10.1016/j.bmcl.2009.06.007.
  • Sagadevan, A.; Ragupathi, A.; Hwang, K. C. Visible-Light-Induced, Copper(I)-Catalysed C–N Coupling between o-Phenylenediamine and Terminal Alkynes: one-Pot Synthesis of 3-Phenyl-2-Hydroxyquinoxalines. Photochem. Photobiol. Sci. 2013, 12, 2110–2118. DOI: 10.1039/C3PP50186H.
  • Ebersol, C.; Rocha, N.; Penteado, F.; Silva, M. S.; Hartwig, D.; Lenardao, E. J.; Jacob, R. G. A Niobium-Catalyzed Coupling Reaction of α-Keto Acids with Ortho-Phenylenediamines: synthesis of 3-Arylquinoxalin-2(1H)-Ones. Green Chem. 2019, 21, 6154–6160. DOI: 10.1039/C9GC02662B.
  • Nguyen, O. T. K.; Phan, A. L. T.; Phan, P. T.; Nguyen, V. D.; Truong, T.; Le, N. T. H.; Le, D. T.; Phan, N. T. S. Ready Access to 3-Substituted Quinoxalin-2-Ones under Superparamagnetic Nanoparticle Catalysis. ChemistrySelect. 2018, 3, 879–886. DOI: 10.1002/slct.201702426.
  • Huang, J.; Chen, W.; Liang, J.; Yang, Q.; Fan, Y.; Chen, M. W.; Peng, Y. α‑Keto Acids as Triggers and Partners for the Synthesis of Quinazolinones, Quinoxalinones, Benzooxazinones, and Benzothiazoles in Water. J. Org. Chem. 2021, 86, 14866–14882. DOI: 10.1021/acs.joc.1c01497.
  • Lurin, E. M.; Kaim, L. E.; Grimaud, L. Benzoxazinone Synthesis via Passerini–Smiles Couplings. Tetrahedron Lett. 2014, 55, 5144–5146. DOI: 10.1016/j.tetlet.2014.07.088.
  • Yan, S.; Ye, L.; Liu, M.; Chen, J.; Ding, J.; Gao, W.; Huang, X.; Wu, H. Unexpected TFA-Catalyzed Tandem Reaction of Benzo[d]Oxazoles with 2-Oxo-2-Arylacetic Acids: synthesis of 3-Aryl-2H-Benzo[b][1,4]Oxazin-2-Ones and Cephalandole A. RSC Adv. 2014, 4, 16705–16709. DOI: 10.1039/C4RA01605J.
  • Ma, S.; Yin, S.; Li, L.; Tao, F. K2CO3-Catalyzed Michael Addition − Lactonization Reaction of 1,2-Allenyl Ketones with Electron-Withdrawing Group Substituted Acetates. An Efficient Synthesis of α-Pyrone Derivatives. Org. Lett. 2002, 4, 505–507. DOI: 10.1021/ol0170859.
  • Mahato, K.; Bagdi, P. R.; Khan, A. T. K2CO3 Catalyzed Regioselective Synthesis of Thieno[2,3-b]Thiochromen-4-One Oximes: Access to the Corresponding Amine and Nitroso Derivatives. Org. Biomol. Chem. 2017, 15, 5625–5634. DOI: 10.1039/C7OB01033H.
  • Shi, M.; Dai, L.-Z.; Shi, Y.-L.; Zhao, G.-L. Potassium Carbonate-Catalyzed Reactions of Salicylic Aldehydes with Allenic Ketones and Esters: An Effective Way to Synthesize Functionalized 2H-Chromenes. Adv. Synth. Catal. 2006, 348, 967–972. DOI: 10.1002/adsc.200505496.
  • Ma, D. H.; Jaladi, A. K.; Lee, J. H.; Kim, T. S.; Shin, W. K.; Hwang, H.; An, D. K. Catalytic Hydroboration of Aldehydes, Ketones, and Alkenes Using Potassium Carbonate: A Small Key to Big Transformation. ACS Omega. 2019, 4, 15893–15903. DOI: 10.1021/acsomega.9b01877.
  • Chanda, A.; Fokin, V. V. Organic Synthesis “on Water”. Chem. Rev. 2009, 109, 725–748. DOI: 10.1021/cr800448q.
  • Cortes-Clerget, M.; Yu, J.; Kincaid, J. R. A.; Walde, P.; Gallou, F.; Lipshutz, B. H. Water as the Reaction Medium in Organic Chemistry: From Our Worst Enemy to Our Best Friend. Chem. Sci. 2021, 12, 4237–4266. DOI: 10.1039/D0SC06000C.
  • Maurer, M. S.; Schwartz, J. H.; Gundapaneni, B.; Elliott, P. M.; Merlini, G.; Waddington-Cruz, M.; Kristen, A. V.; Grogan, M.; Witteles, R.; Damy, T.; et al. Tafamidis Treatment for Patients with Transthyretin Amyloid Cardiomyopathy. N Engl. J. Med. 2018, 379, 1007–1016. DOI: 10.1056/NEJMoa1805689.
  • Elliott, P.; Drachman, B. M.; Gottlieb, S. S.; Hoffman, J. E.; Hummel, S. L.; Lenihan, D. J.; Ebede, B.; Gundapaneni, B.; Li, B.; Sultan, M. B.; Shah, S. J. Long-Term Survival with Tafamidis in Patients with Transthyretin Amyloid Cardiomyopathy. Circ. Heart Fail. 2022, 15, e008193. DOI: 10.1161/CIRCHEARTFAILURE.120.008193.
  • Yang, Y. M.; Yan, W.; Hu, H. W.; Luo, Y.; Tang, Z. Y.; Luo, Z. Photoinduced Acetylation of Anilines under Aqueous and Catalyst-Free Conditions. J. Org. Chem. 2021, 86, 12344–12353. DOI: 10.1021/acs.joc.1c01290.
  • Sreenivas, A.; Jayaram, R. K.; Satish, K.; Rambabu, Y.; Anantha, K. K.; Srigiridhar, K. Synthesis and Cytotoxicity of Novel 6H-Indolo[2,3-b]Quinoxaline Derivatives. Med. Chem. Res. 2013, 22, 3712–3718. DOI: 10.1007/s00044-012-0373-7.
  • Hanson, R. W. Decarboxylation of a Keto Acids. J. Chem. Educ. 1987, 64, 591–595. DOI: 10.1021/ed064p591.
  • Rudolphi, F.; Song, B.; Gooßen, L. J. Synthesis of Azomethines from α‐Oxocarboxylates, Amines and Aryl Bromides via One‐Pot Three‐Component Decarboxylative Coupling. Adv. Synth. Catal. 2011, 353, 337–342. DOI: 10.1002/adsc.201000798.
  • Huang, Y.; Yan, D.; Wang, X.; Zhou, P.; Wu, W.; Jiang, H. Controllable Assembly of the Benzothiazole Framework Using a C≡C Triple Bond as a One-Carbon Synthon. Chem. Commun. 2018, 54, 1742–1745. DOI: 10.1039/C7CC09855C.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.