Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 54, 2024 - Issue 2
137
Views
3
CrossRef citations to date
0
Altmetric
Articles

Design, synthesis and antimicrobial activity of heteroannulated chromeno[3′,2′:5,6]pyrido[2,3-d][1,3]thiazolo[3,2-a]pyrimidines

, , , &
Pages 133-143 | Received 25 Sep 2023, Published online: 26 Nov 2023

References

  • Fan, M.; Yang, W.; He, M.; Li, Y.; Peng, Z.; Wang, G. Occurrence, Synthesis and Biological Activity of 2-(2-Phenyethyl)Chromones. Eur. J. Med. Chem. 2022, 237, 114397. DOI: 10.1016/j.ejmech.2022.114397.
  • Zhang, S.; Xie, Y.; Song, L.; Wang, Y.; Qiu, H.; Yang, Y.; Li, C.; Wang, Z.; Han, Z.; Yang, L. Seven New 2-(2-Phenylethyl)Chromone Derivatives from Agarwood of Aquilaria agallocha with Inhibitory Effects on Nitric Oxide Production. Fitoterapia 2022, 159, 105177. DOI: 10.1016/j.fitote.2022.105177.
  • Shanmugapriya, A.; Kalaiarasi, G.; Ravi, M.; Sparkes, H. A.; Kalaivani, P.; Prabhakaran, R. Palladium-Mediated C-O Bond Activation of Benzopyrone in 4-Oxo-4H-Chromene-3-Carbaldehyde-4(N)-Substituted Thiosemicarbazone: Synthesis, Structure, Nucleic Acid/Albumin Interaction, DNA Cleavage, Antioxidant and Cytotoxic Studies. New J. Chem. 2021, 45, 20227–20240. DOI: 10.1039/D1NJ04076F.
  • Patil, V. M.; Masand, N.; Verma, S.; Masand, V. Chromones: Privileged Scaffold in Anticancer Drug Discovery. Chem. Biol. Drug Des. 2021, 98, 943–953. DOI: 10.1111/cbdd.13951.
  • Saito, Y.; Taniguchi, Y.; Hirazawa, S.; Miura, Y.; Tsurimoto, H.; Nakayoshi, T.; Oda, A.; Hamel, E.; Yamashita, K.; Goto, M.; Nakagawa-Goto, K. Effects of Substituent Pattern on the Intracellular Target of Antiproliferative Benzo[b]Thiophenyl Chromone Derivatives. Eur. J. Med. Chem. 2021, 222, 113578. DOI: 10.1016/j.ejmech.2021.113578.
  • Liu, F.-Z.; Wang, H.; Li, W.; Yang, L.; Yang, J.-L.; Yuan, J.-Z.; Wei, Y.-M.; Jiang, B.; Mei, W.-L.; Dai, H.-F. Filarones A and B, New anti-Inflammatory Dimeric 2-(2-Phenethyl)Chromones from Agarwood of Aquilaria Filaria. Phytochem. Lett 2021, 46, 11–14. DOI: 10.1016/j.phytol.2021.09.008.
  • Albrecht, U.; Lalk, M.; Langer, P. Synthesis and Structure–Activity Relationships of 2-Vinylchroman-4-Ones as Potent Antibiotic Agents. Bioorg. Med. Chem. 2005, 13, 1531–1536. DOI: 10.1016/j.bmc.2004.12.031.
  • Liu, Y.; Ding, L.; He, J.; Zhang, Z.; Deng, Y.; He, S.; Yan, X. A New Antibacterial Chromone from a Marine Sponge-Associated Fungus Aspergillus sp. LS57. Fitoterapia 2021, 154, 105004. DOI: 10.1016/j.fitote.2021.105004.
  • Ali, T. E.; Ibrahim, M. A. Synthesis and Antimicrobial Activity of Chromone-Linked 2-Pyridone Fused with 1,2,4-Triazoles, 1,2,4-Triazines and 1,2,4-Triazepines Ring Systems. J. Braz. Chem. Soc. 2010, 21, 1007–1016. DOI: 10.1590/S0103-50532010000600010.
  • Zhou, T.; Shi, Q.; Chen, C.-H.; Zhu, H.; Huang, L.; Ho, P.; Lee, K.-H. Anti-AIDS Agents 79. Design, Synthesis, Molecular Modeling and Structure–Activity Relationships of Novel Dicamphanoyl-2′,2′-Dimethyldihydropyranochromone (DCP) Analogs as Potent Anti-HIV Agents. Bioorg. Med. Chem. 2010, 18, 6678–6689. DOI: 10.1016/j.bmc.2010.07.065.
  • Makhaeva, G. F.; Boltneva, N. P.; Lushchekina, S. V.; Rudakova, E. V.; Serebryakova, O. G.; Kulikova, L. N.; Beloglazkin, A. A.; Borisov, R. S.; Richardson, R. J. Synthesis, Molecular Docking, and Biological Activity of 2-Vinylchromones: Toward Selective Butyrylcholinesterase Inhibitors for Potential Alzheimer’s Disease Therapeutics. Bioorg. Med. Chem. 2018, 26, 4716–4725. DOI: 10.1016/j.bmc.2018.08.010.
  • Ibrahim, M. A. Studies on the Chemical Reactivity of 1H-Benzimidazol-2-Ylacetonitrile towards Some 3-Substituted Chromones: synthesis of Some Novel Pyrido[1,2-a]Benzimidazoles. Tetrahedron. 2013, 69, 6861–6865. DOI: 10.1016/j.tet.2013.06.011.
  • Ibrahim, M. A. Ring Transformation of Chromone-3-Carboxamide. Tetrahedron. 2009, 65, 7687–7690. DOI: 10.1016/j.tet.2009.06.107.
  • Ibrahim, M. A.; Badran, A. Cascade Reactions between 2-Substituted-3-(4-Oxo-4H-Chromen-3-yl)Acrylonitriles with Benzylamine and p-Toluidine. ARKIVOC 2018, 2018, 214–224.p010.745. DOI: 10.24820/ark.5550190.
  • Ibrahim, M. A.; Badran, A.; Hashiem, S. H. Heteroannulated Coumarins and Chromones from Chemical Transformations of 6,8‐Dimethylchromone‐3‐Carbonitrile. J. Heterocyclic Chem. 2018, 55, 2844–2851. DOI: 10.1002/jhet.3354.
  • Ibrahim, M. A.; El-Kazak, A. M. Ring Opening and Recyclization Reactions with Chromone-3-Carbonitrile. J. Heterocyclic Chem. 2019, 56, 1075–1085. DOI: 10.1002/jhet.3495.
  • Hashiem, S. H.; Ibrahim, M. A.; Badran, A.; El-Gohary, N. M.; Allimony, H. A. Synthetic Approaches for Heteroannulated Chromones Fused Various Heterocyclic Systems. Heterocycles. 2021, 102, 1011–1060. DOI: 10.3987/REV-20-940.
  • Ali, T. E.; Ibrahim, M. A.; El-Edfawy, S. M. Synthesis and Cytotoxicity Evaluation of Some Novel Chromone Annulated Phosphorus Heterocycles. Phosph. Sulfur, Silicon Rel. Elem. 2017, 192, 819–826. DOI: 10.1080/10426507.2017.1287183.
  • Ibrahim, M. A.; Alnamer, Y. A. Synthetic Approaches for Construction of Novel 3-Heteroarylchromeno[2,3-b]Pyridines and Annulated Chromenopyridopyrazolo Pyrimidines. Heterocycles. 2021, 102, 2138–2152. DOI: 10.3987/COM-21-14530.
  • Sheykhi, S.; Pedrood, K.; Amanlou, M.; Larijani, B.; Mahdavi, M. Synthesis of Chromene-Fused Heterocycles by the IntramoleculareDielseAlder Reaction: An Overview. Tetrahedron. 2021, 102, 132524. DOI: 10.1016/j.tet.2021.132524.
  • Ibrahim, M. A.; Al‐Harbi, S. A.; Allehyani, E. S. Construction, Characterization, and Antimicrobial Evaluation of the Novel Heteroannulated Chromeno[2′′,3′′:6′,5′] Pyrido[2′,3′‐d][1,3]Thiazolo[3,2‐a]Pyrimidines. J. Heterocyclic Chem. 2021, 58, 241–249. DOI: 10.1002/jhet.4163.
  • Ibrahim, M. A. Synthesis and Characterization of the Novel Heteroannulated Chromeno[2,3‐d]Pyrimidines and Chromeno[2,3‐d][1,3]Thiazolo[3,2‐a]Pyrimidines. J. Heterocyclic Chem. 2022, 59, 2076–2083. DOI: 10.1002/jhet.4542.
  • Ibrahim, M. A.; Al-Harbi, S. A.; Allehyani, E. S.; Alqurashi, E. A.; Alshareef, F. M. Synthetic Approaches for Construction of Novel Angular Heterocyclic Systems Containing Chromeno[2,3-b]Quinolines. Heterocycles. 2022, 104, 1994–2007. DOI: 10.3987/COM-22-14738.
  • Alshaye, N. A.; Ibrahim, M. A. Synthesis, Characterization and Biological Evaluation of the Novel Chromenopyridothiazolopyrimidines and Chromenopyrido Pyrimidothiazolopyrimidines. Synth. Commun 2023, 53, 332–344. DOI: 10.1080/00397911.2023.2172684.
  • Mahdavi, E.; Esmaeili, A. A. Efficient Synthesis of Novel Chromeno[2,3‑d][1,3,4] Thiadiazolo[3,2‑a]Pyrimidine Derivatives via Three-Component Reaction Using Acidic Ionic Liquid Catalysts in Ethylene Glycol. Res. Chem. Intermed. 2023, 49, 1297–1310. DOI: 10.1007/s11164-022-04944-x.
  • Ibrahim, M. A. Synthesis and Characterization of New Chromeno[2, 3-b]Pyridines via the Friedländer Reactions of 8-Allyl-2-Amino-4-Oxo-4H-Chromene-3-Carboxaldehyde. Eur. J. Chem. 2010, 1, 124–128. DOI: 10.5155/eurjchem.1.2.124-128.75.
  • Ibrahim, M. A.; El-Gohary, N. M.; Said, S. Synthesis of Heteroannulated Chromeno[2,3-b] Pyridines: DBU Catalyzed Reactions of 2-Amino-6-Methylchromone-3-Carboxaldehyde with Some Heterocyclic Enols and Enamines. J. Heterocyclic Chem. 2016, 53, 117–120. DOI: 10.1002/jhet.2285.
  • Hussain, Z.; Ibrahim, M. A.; El-Gohary, N. M.; Badran, A. Synthesis, Characterization, DFT, QSAR, Antimicrobial, and Antitumor Studies of Some Novel Pyridopyrimidines. J. Mol. Struct 2022, 1269, 133870. DOI: 10.1016/j.molstruc.2022.133870.
  • Alshaye, N. A.; Ibrahim, M. A. 4-Amino-3-Formylcoumarin as Building Block for Construction of Novel Heteroannulated Coumarins: synthesis, Characterization and Antimicrobial Evaluation. Heterocycles. 2022, 104, 2179–2194. DOI: 10.3987/COM-2214748.
  • Kumar, A.; Singh, A. K.; Singh, H.; Vijayan, V.; Kumar, D.; Naik, J.; Thareja, S.; Yadav, J. P.; Pathak, P.; Grishina, M.; et al. Nitrogen Containing Heterocycles as Anticancer Agents: A Medicinal Chemistry Perspective. Pharmaceut. 2023, 16, 299–367. DOI: 10.3390/ph16020299.
  • Chidambaram, S.; Mostafa, A. A.; Al-Askar, A. A.; Sayed, S. R.; Radhakrishnan, S.; Idhayadhulla, A. Green Catalyst Cu(II)-Enzyme-Mediated Eco-Friendly Synthesis of 2-Pyrimidinamines as Potential Larvicides against Culex quinquefasciatus Mosquito and Toxicity Investigation against Non-Target Aquatic Species. Bioorg. Chem. 2021, 109, 104697. DOI: 10.1039/c9ra04496e.
  • Mostafa, A. A.; SathishKumar, C.; Al-Askar, A. A.; Sayed, S. R. M.; SurendraKumar, R.; Idhayadhulla, A. Synthesis of Novel Benzopyran-Connected Pyrimidine and Pyrazole Derivatives via a Green Method Using Cu(II)-Tyrosinase Enzyme Catalyst as Potential Larvicidal, Antifeedant Activities. RSC Adv. 2019, 9, 25533–25543. DOI: 10.1002/slct.202000060.
  • SathishKumar, C.; Keerthana, S.; Ahamed, A.; Arif, A.; SurendraKumar, R.; Idhayadhulla, A. CuII-Tyrosinase Enzyme Catalyst-Mediated Synthesis of 2-Thioxopyrimidine Derivatives with Potential Mosquito Larvicidal Activity: Spectroscopic and Computational Investigation as Well as Molecular Docking Interaction with OBPs of Culex quinquefasciatus. Chem. Select. 2020, 5, 4567–4574. DOI: 10.1002/slct.202000060.
  • Nazir, M. S.; Aslam, S.; Ahmad, M.; Zahoor, A. F. Recent Updates on the Synthesis of Thiazolopyrimidines Derivatives. Synth. Commun. 2023, 53, 1173–1206. DOI: 10.1080/00397911.2023.2212096.
  • Iqbal, A.; Khan, A.; Ahmedi, S.; Manzoor, N.; Siddiqui, T. Synthesis, Antifungal Evaluation, and Molecular Docking Studies of Steroidal Thiazolopyrimidines. Steroids. 2023, 193, 109186. DOI: 10.1016/j.steroids.2023.109186.
  • Istanbullu, H.; Bayraktar, G.; Karakaya, G.; Akbaba, H.; Perk, N. E.; Cavus, I.; Podlipnik, C.; Yereli, K.; Ozbilgin, A.; Butuner, B. D.; Alptuzun, V. Design, Synthesis, in Vitro–in Vivo Biological Evaluation of Novel Thiazolopyrimidine Compounds as Antileishmanial Agent with PTR1 Inhibition. Eur. J. Med. Chem. 2023, 247, 115049. DOI: 10.1016/j.ejmech.2022.115049.
  • Ibrahim, M. A.; Al-Harbi, S. A.; Allehyani, E. S.; Alqurashi, E. A.; Alshareef, F. M. Novel Heteroannulated Chromeno[3′,2′:5,6]Pyrido[2,3-d]Pyrido[2′,3′:4,5][1,3] Thiazolo[3,2-a]Pyrimidines: Synthesis, Characterization and Antimicrobial Evaluation. Poly. Arom. Compds 2023, 1–14. DOI: 10.1080/10406638.2023.2172050.
  • Ibrahim, S. S.; Allimony, H. A.; Abdel-Halim, A. M.; Ibrahim, M. A. Synthesis and Reactions of 8-Allylchromone-3-Carboxaldehyde. Arkivoc. 2010, 2009, 28–38. DOI: 10.3998/ark.5550190.0010.e03.
  • Alshaye, N. A.; Ibrahim, M. A. Synthesis and Characterization of Some Novel Heteroannulated Chromeno[4,3-b]Quinolines. Heterocycles. 2023, 106, 117–134. DOI: 10.3987/COM-22-14770.
  • Abdel Halim, S.; Ibrahim, M. A. Synthesis, DFT Calculations, Electronic Structure, Electronic Absorption Spectra, Natural Bond Orbital (NBO) and Nonlinear Optical (NLO) Analysis of the Novel 5-Methyl-8H-Benzo[h]Chromeno[2,3-b][1,6]Naphthyridine-6(5H),8-Dione (MBCND). J. Mol. Struct. 2017, 1130, 543–558. DOI: 10.1016/j.molstruc.2016.10.058.
  • Atta-Ur-Rahman; Choudhary, M. I.; Thomsen, W. J. Bioassay techniques for drug development. The Netherlands: Harwood Academic Publishers, 2001; p. 16.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.