Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 54, 2024 - Issue 10
54
Views
0
CrossRef citations to date
0
Altmetric
Articles

Synthesis and characterization of alumina supported molybdosilicic acid (SiMo12/Al2O3): Efficient solid acid catalyst for the synthesis of pyranopyrazole derivatives

, , , &
Pages 826-842 | Received 21 Mar 2024, Published online: 11 May 2024

References

  • Khillare, K. R.; Aher, D. S.; Chavan, L. D.; Shankarwar, S. G. Cesium Salt of 2-Molybdo-10-Tungstophosphoric Acid as an Efficient and Reusable Catalyst for the Synthesis of Uracil Derivatives via a Green Route. RSC Adv. 2021, 11, 33980–33989. DOI: 10.1039/D1RA05190C.
  • Aher, D. S.; Khillare, K. R.; Shankarwar, S. G. Incorporation of Keggin-Based H 3 PW 7 Mo 5 O 40 into Bentonite: Synthesis, Characterization and Catalytic Applications. RSC Adv. 2021, 11, 11244–11254. DOI: 10.1039/D1RA01179K.
  • Aher, D. S.; Khillare, K. R.; Chavan, L. D.; Shelke, V. A.; Shankarwar, S. G. A Simple and Efficient Protocol for the Synthesis of Quinoxaline Derivatives Using Recyclable H 5 PW 6 Mo 4 V 2 O 40 ·14H 2 O Catalyst. Synth. Commun. 2022, 52, 1379–1388. DOI: 10.1080/00397911.2022.2093645.
  • Aher, D. S.; Khillare, K. R.; Chavan, L. D.; Shankarwar, S. G. H3PMo7W5O40·24H2O Catalyzed Access to Fused Pyrazolopyranopyrimidine Derivatives via One-Pot Multicomponent Synthesis: Green Chemistry. Monatsh Chem. 2022, 153, 79–85. DOI: 10.1007/s00706-021-02868-7.
  • Horan, J. L.; Genupur, A.; Ren, H.; Sikora, B. J.; Kuo, M.-C.; Meng, F.; Dec, S. F.; Haugen, G. M.; Yandrasits, M. A.; Hamrock, S. J.; et al. Copolymerization of Divinylsilyl-11-Silicotungstic Acid with Butyl Acrylate and Hexanediol Diacrylate : Synthesis of a Highly Proton-Conductive Membrane for Fuel-Cell Applications. ChemSusChem 2009, 2, 226–229. DOI: 10.1002/cssc.200800237.
  • Gurav, H. R.; Nandiwale, K. Y.; Bokade, V. V. Pseudo-Homogeneous Kinetic Model for Esterification of Acetic Acid with Propanol Isomers over Dodecatungstophosphoric Acid Supported on Montmorillonite K10. J. Phys. Org. Chem. 2014, 27, 121–127. DOI: 10.1002/poc.3249.
  • Chavan, L. D.; Shankarwar, S. G. KSF Supported 10-Molybdo-2-Vanadophosphoric Acid as an Efficient and Reusable Catalyst for One-Pot Synthesis of 2,4,5-Trisubstituted Imidazole Derivatives under Solvent-Free Condition. Chinese J. Catal. 2015, 36, 1054–1059. DOI: 10.1016/S1872-2067(15)60830-0.
  • Coronel, N. C.; da Silva, M. J.; Ferreira, S. O.; da Silva, R. C.; Natalino, R. K5PW11NiO39-Catalyzed Oxidation of Benzyl Alcohol with Hydrogen Peroxide. ChemistrySelect 2019, 4, 302–310. DOI: 10.1002/slct.201802616.
  • Bencedira, S.; Bechiri, O.; Djenouhat, M.; Boulkra, M. Cobalt-Substituted Heteropolyanion: Synthesis, Characterization, and Application to Oxidation of an Organic Dye in an Aqueous Medium. Arab. J. Sci. Eng. 2020, 45, 4669–4681. DOI: 10.1007/s13369-020-04392-y.
  • Fakhri, H.; Mahjoub, A. R.; Aghayan, H. Effective Removal of Methylene Blue and Cerium by a Novel Pair Set of Heteropoly Acids Based Functionalized Graphene Oxide: Adsorption and Photocatalytic Study. Chem. Eng. Res. Des. 2017, 120, 303–315. DOI: 10.1016/j.cherd.2017.02.030.
  • Chamack, M.; Mahjoub, A. R.; Aghayan, H. Cesium Salts of Tungsten-Substituted Molybdophosphoric Acid Immobilized onto Platelet Mesoporous Silica: Efficient Catalysts for Oxidative Desulfurization of Dibenzothiophene. Chem. Eng. J. 2014, 255, 686–694. DOI: 10.1016/j.cej.2014.06.054.
  • Aher, D. S.; Khillare, K. R.; Chavan, L. D.; Shankarwar, S. G. Tungsten-Substituted Molybdophosphoric Acid Impregnated with Kaolin: Effective Catalysts for the Synthesis of 3,4-Dihydropyrimidin-2(1 H) -Ones v i a Biginelli Reaction. RSC Adv. 2021, 11, 2783–2792. DOI: 10.1039/D0RA09811F.
  • Aher, D. S.; Khillare, K. R.; Chavan, L. D.; Shankarwar, S. G. Quaternary Vanado‐Molybdotungstophosphoric Acid [H 5 PW 6 Mo 4 V 2 O 40] over Natural Montmorillonite as a Heterogeneous Catalyst for the Synthesis 4 H ‐Pyran and Polyhydroquinoline Derivatives. ChemistrySelect 2020, 5, 7320–7331. DOI: 10.1002/slct.202001065.
  • Farhadi, S.; Zareisahamieh, R.; Zaidi, M. H6GeMo10V2O40•16H2O Nanoparticles Prepared by Hydrothermal Method: A New and Reusable Heteropoly Acid Catalyst for Highly Efficient Acetylation of Alcohols and Phenols under Solvent-Free Conditions. J. Braz. Chem. Soc. 2011, 22, 1323–1332. DOI: 10.1590/S0103-50532011000700018.
  • Sharma, P.; Vyas, S.; Patel, A. Heteropolyacid Supported onto Neutral Alumina: Characterization and Esterification of 1° and 2° Alcohol. J. Mol. Catal. A Chem. 2004, 214, 281–286. DOI: 10.1016/j.molcata.2003.12.038.
  • Suppan, T.; Kunjunni, M. K.; Barik, A.; Bhattacharjee, R. R. Effect of Jeffamine® -Modified Phosphotungstic Acid on Porphyrin Synthesis in Water. ChemistrySelect 2018, 3, 1275–1281. DOI: 10.1002/slct.201702845.
  • Khder, A.; el, R.; Hassan, H.; Shall, El.; Khder, M. S. A. S.; Hassan, H. M. A.; Shall, M. S. El Acid Catalyzed Organic Transformations by Heteropoly Tungstophosphoric Acid Supported on MCM-41. Appl. Catal. A Gen. 2012, 411-412, 77–86. DOI: 10.1016/j.apcata.2011.10.024.
  • de Godói Silva, V. W.; Laier, L. O.; Silva, M. J. D. Novel H3PW12O40: Catalysed Esterification Reactions of Fatty Acids at Room Temperature for Biodiesel Production. Catal. Lett. 2010, 135, 207–211. DOI: 10.1007/s10562-010-0294-3.
  • Ai, M. Comparison of Catalytic Properties for Partial Oxidation between Heteropolyacids and Phosphates of Vanadium and Iron. J. Mol. Catal. A Chem. 1996, 114, 3–13. DOI: 10.1016/S1381-1169(96)00300-7.
  • da Conceição, L. R. V.; Reis, C. E. R.; de Lima, R.; Cortez, D. V.; de Castro, H. F. Keggin-Structure Heteropolyacid Supported on Alumina to Be Used in Trans/Esterification of High-Acid Feedstocks. RSC Adv. 2019, 9, 23450–23458. DOI: 10.1039/C9RA04300D.
  • Majdi, H. S.; Saud, A. N.; Saud, S. N. Modeling the Physical Properties of Gamma Alumina Catalyst Carrier Based on an Artificial Neural Network. Materials (Basel) 2019, 12, 1752. DOI: 10.3390/ma12111752.
  • Kurhade, A.; Dalai, A. K. Physiochemical Characterization and Support Interaction of Alumina‐Supported Heteropolyacid Catalyst for Biodiesel Production. Asia-Pacific J. Chem. Eng. 2018, 13, e2249. DOI: 10.1002/apj.2249.
  • Valiulin, R. A.; Halliburton, L. M.; Kutateladze, A. G. Interrupted Oligomerization Revisited: Simple and Efficient One-Pot Multicomponent Approach to Versatile Synthetic Intermediates. Org. Lett. 2007, 9, 4061–4063. DOI: 10.1021/ol701847b.
  • Hasaninejad, A.; Shekouhy, M.; Reza Mohammadizadeh, M.; Zare, A. Zirconium Nitrate: A Reusable Water Tolerant Lewis Acid Catalyst for the Synthesis of N-Substituted Pyrroles in Aqueous Media. RSC Adv. 2012, 2, 6174. DOI: 10.1039/c2ra20294h.
  • Zolfigol, M. A.; Tavasoli, M.; Moosavi-Zare, A. R.; Moosavi, P.; Kruger, H. G.; Shiri, M.; Khakyzadeh, V. Synthesis of Pyranopyrazoles Using Isonicotinic Acid as a Dual and Biological Organocatalyst. RSC Adv. 2013, 3, 25681. DOI: 10.1039/c3ra45289a.
  • Li, J. J. Name Reactions; Springer International Publishing: Cham, 2014. DOI: 10.1007/978-3-319-03979-4.
  • Reddy, M. B. M.; Jayashankara, V. P.; Pasha, M. A. Glycine-Catalyzed Efficient Synthesis of Pyranopyrazoles via One-Pot Multicomponent Reaction. Synth. Commun 2010, 40, 2930–2934. DOI: 10.1080/00397910903340686.
  • Moosavi-Zare, A. R.; Zolfigol, M. A.; Salehi-Moratab, R.; Noroozizadeh, E. Catalytic Application of 1-(Carboxymethyl)Pyridinium Iodide on the Synthesis of Pyranopyrazole Derivatives. J. Mol. Catal. A Chem 2016, 415, 144–150. DOI: 10.1016/j.molcata.2016.02.003.
  • Nasr, M. N.; Gineinah, M. M. Antiviral Agents: Synthesis and Biological Activity, 2002;289–295. DOI: 10.1002/1521-4184(200208)335
  • Ahluwalia, V. K.; Dahiya, A.; Garg, V. K. Reaction of 5-Amino-4-Formyl-3-Methyl (or Phenyl)-1-Phenyl-1H-Pyrazoles with Active Methylene Compounds: Synthesis of Fused Heterocyclic Rings. Indian J. Chem. Sect. B Org. Chem. Incl. Med. Chem. 1997, 36, 88–90.
  • Atar, A. B.; Kim, J. T.; Lim, K. T.; Jeong, Y. T. ChemInform Abstract: Synthesis of 6-Amino-2,4-Dihydropyrano[2,3-c]Pyrazol-5-Carbonitriles Catalyzed by Silica-Supported Tetramethylguanidine under Solvent-Free Conditions. ChemInform 2015, 46, no–no. DOI: 10.1002/chin.201504139.
  • Junek, H.; Aigner, H. Synthesen Mit Nitrilen, XXXV. Reaktionen Von Tetracyanäthylen Mit Heterocyclen. Chem. Ber. 1973, 106, 914–921. DOI: 10.1002/cber.19731060323.
  • Moosavi-Zare, A. R.; Afshar-Hezarkhani, H.; Rezaei, M. M. Tandem Four Component Condensation Reaction of Aryl Aldehydes with Ethyl Acetoacetate, Malononitrile, and Hydrazine Hydrate Using Boric Acid in Water as an Efficient and Green Catalytic System. Polycycl. Aromat. Compd. 2020, 40, 150–158. DOI: 10.1080/10406638.2017.1382541.
  • Kanagaraj, K.; Pitchumani, K. Solvent-Free Multicomponent Synthesis of Pyranopyrazoles: Per-6-Amino-β-Cyclodextrin as a Remarkable Catalyst and Host. Tetrahedron Lett. 2010, 51, 3312–3316. DOI: 10.1016/j.tetlet.2010.04.087.
  • Laloo, B. M.; Mecadon, H.; Rohman, M. R.; Kharbangar, I.; Kharkongor, I.; Rajbangshi, M.; Nongkhlaw, R.; Myrboh, B. Reaction of Selenium Dioxide with Aromatic Ketones in the Presence of Boron Triflouride Etherate: A Protocol for the Synthesis of Triarylethanones. J. Org Chem. 2012, 77, 707–712. DOI: 10.1021/jo201985n.
  • El-Remaily, M. A. E. A. A. A. Synthesis of Pyranopyrazoles Using Magnetic Fe3O4 Nanoparticles as Efficient and Reusable Catalyst. Tetrahedron 2014, 70, 2971–2975. DOI: 10.1016/j.tet.2014.03.024.
  • Sambasiva Rao, P.; Kurumurthy, C.; Veeraswamy, B.; Santhosh Kumar, G.; Shanthan Rao, P.; Pamanji, R.; Venkateswara Rao, J.; Narsaiah, B. Synthesis of Novel 2-Alkyl Triazole-3-Alkyl Substituted Quinoline Derivatives and Their Cytotoxic Activity. Bioorg. Med. Chem. Lett. 2013, 23, 1225–1227. DOI: 10.1016/j.bmcl.2013.01.021.
  • Ablajan, K.; Wang, L. J.; Maimaiti, Z.; Lu, Y. T. CeCl3-Promoted One-Pot Synthesis of Multisubstituted Bispyrano[2,3-c]Pyrazole Derivatives. Monatsh. Chem. 2014, 145, 491–496. DOI: 10.1007/s00706-013-1104-6.
  • Maleki, B.; Hemmati, S.; Sedrpoushan, A.; Ashrafi, S. S.; Veisi, H. Selective Synthesis of Sulfoxides and Sulfones from Sulfides Using Silica Bromide as the Heterogeneous Promoter and Hydrogen Peroxide as the Terminal Oxidant. RSC Adv. 2014, 4, 40505–40510. DOI: 10.1039/C4RA06132B.
  • Tekale, S. U.; Kauthale, S. S.; Jadhav, K. M.; Pawar, R. P. Nano-ZnO Catalyzed Green and Efficient One-Pot Four-Component Synthesis of Pyranopyrazoles. J. Chem. 2013, 2013, 1–8. DOI: 10.1155/2013/840954.
  • Paglia, G.; Buckley, C. E.; Udovic, T. J.; Rohl, A. L.; Jones, F.; Maitland, C. F.; Connolly, J. Hydrogen and Surface Effects. Chem. Mater 2004, 16, 1914–1923. DOI: 10.1021/cm035193e.
  • Xie, Z.; Wu, H.; Wu, Q.; Ai, L. Synthesis and Performance of Solid Proton Conductor Molybdovanadosilicic Acid. RSC Adv. 2018, 8, 13984–13988. DOI: 10.1039/C8RA02390E.
  • Evangelista, J. P. C.; Chellappa, T.; Coriolano, A. C. F.; Fernandes, V. J.; Souza, L. D.; Araujo, A. S. Synthesis of Alumina Impregnated with Potassium Iodide Catalyst for Biodiesel Production from Rice Bran Oil. Fuel Process. Technol. 2012, 104, 90–95. DOI: 10.1016/j.fuproc.2012.04.028.
  • Cai, H.; Wu, X.; Wu, Q.; Yan, W. Synthesis and High Proton Conductive Performance of a Quaternary Vanadomolybdotungstosilicic Heteropoly Acid. Dalton Trans. 2016, 45, 14238–14242. DOI: 10.1039/C6DT02727J.
  • Waghmare, A. S.; Pandit, S. S. DABCO Catalyzed Rapid One-Pot Synthesis of 1,4-Dihydropyrano [2,3-c] Pyrazole Derivatives in Aqueous Media. J. Saudi Chem. Soc. 2017, 21, 286–290. DOI: 10.1016/j.jscs.2015.06.010.
  • Moeinpour, F.; Khojastehnezhad, A. Polyphosphoric Acid Supported on Ni0.5Zn0.5Fe2O4 Nanoparticles as a Magnetically-Recoverable Green Catalyst for the Synthesis of Pyranopyrazoles. Arab. J. Chem. 2017, 10, S3468–S3474. DOI: 10.1016/j.arabjc.2014.02.009.
  • Khandare, P. M.; Ingale, R. D.; Taware, A. S.; Shisodia, S. U.; Pawar, S. S.; Kotai, L.; Pawar, R. P. One Pot Synthesis and Biological Evaluation of Pyranopyrazole in Aqueous Medium. ECB 2017, 6, 410. DOI: 10.17628/ecb.2017.6.410-414.
  • Moosavi-Zare, A. R.; Zolfigol, M. A.; Mousavi-Tashar, A. Synthesis of Pyranopyrazole Derivatives by in Situ Generation of Trityl Carbocation under Mild and Neutral Media. Res. Chem. Intermed. 2016, 42, 7305–7312. DOI: 10.1007/s11164-016-2537-4.
  • Siddekha, A.; Nizam, A.; Pasha, M. A. An Efficient and Simple Approach for the Synthesis of Pyranopyrazoles Using Imidazole (Catalytic) in Aqueous Medium, and the Vibrational Spectroscopic Studies on 6-Amino-4-(4′-Methoxyphenyl)-5-Cyano-3-Methyl-1-Phenyl-1,4-Dihydropyrano[2,3-c]Pyrazole Using. Spectrochim Acta A Mol. Biomol. Spectrosc. 2011, 81, 431–440. DOI: 10.1016/j.saa.2011.06.033.
  • Kiyani, H.; Samimi, H. A.; Ghorbani, F.; Esmaieli, S. One-Pot, Four-Component Synthesis of Pyrano[2,3-c]Pyrazoles Catalyzed by Sodium Benzoate in Aqueous Medium. Curr. Chem. Lett. 2013, 2, 197–206. DOI: 10.5267/j.ccl.2013.07.002.
  • Ayati, A.; Heravi, M. M.; Daraie, M.; Tanhaei, B.; Bamoharram, F. F.; Sillanpaa, M. H3PMo12O40 Immobilized Chitosan/Fe3O4 as a Novel Efficient, Green and Recyclable Nanocatalyst in the Synthesis of Pyrano-Pyrazole Derivatives. J. Iran Chem Soc. 2016, 13, 2301–2308. DOI: 10.1007/s13738-016-0949-0.
  • Dadaei, M.; Naeimi, H. An Environment-Friendly Method for Green Synthesis of Pyranopyrazole Derivatives Catalyzed by CoCuFe 2 O 4 Magnetic Nanocrystals under Solvent-Free Conditions. Polycycl. Aromat. Compd. 2022, 42, 204–217. DOI: 10.1080/10406638.2020.1725897.
  • Hassanpour, A.; Khanmiri, R. H.; Abolhasani, J. ZnO Nanoparticles as an Efficient, Heterogeneous, Reusable, and Ecofriendly Catalyst for One-Pot, Three-Component Synthesis of 3,4-Dihydropyrimidin-2(1 H) -(Thio)One Derivatives in Water. Synth. Commun. 2015, 45, 727–733. DOI: 10.1080/00397911.2014.987350.
  • Yang, W.; Du, X.; Zhao, J.; Chen, Z.; Li, J.; Xie, J.; Zhang, Y.; Cui, Z.; Kong, Q.; Zhao, Z.; et al. Hydrated Eutectic Electrolytes with Ligand-Oriented Solvation Shells for Long-Cycling Zinc-Organic Batteries. Joule 2020, 4, 1557–1574. DOI: 10.1016/j.joule.2020.05.018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.