Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 54, 2024 - Issue 13
40
Views
0
CrossRef citations to date
0
Altmetric
Articles

Catalyst- and chromatography-free multi-component domino synthesis of 5-alkyl barbituric acids at room temperature

, , &
Pages 1051-1059 | Received 19 Jan 2024, Published online: 22 Jun 2024

References

  • (a) Tietze, L. F. Domino Reactions in Organic Synthesis. Chem. Rev. 1996, 96, 115–136. (b) Pellissier, H. Stereocontrolled Domino Reactions. Chem. Rev. 2013, 113, 442–524. DOI: 10.1021/cr300271k. (c) Pellissier, H. Asymmetric Domino Reactions. Part B: Reactions Based on the Use of Chiral Catalysts and Biocatalysts. Tetrahedron. 2006, 62, 2143–2173. doi:10.1016/j.tet.2005.10.041. (d) Deb, M. L.; Deka, B.; Rahman, I.; Baruah, P. K. L-Proline Catalyzed Domino Michael Addition of N-Substituted Anilines. Tetrahedron Lett. 2018, 59, 4430–4433. doi:10.1016/j.tetlet.2018.11.004.
  • (a) Moosavi-Zare, A. R.; Zolfigol, M. A.; Khaledian, O.; Khakyzadeh, V.; Farahani, M. D.; Kruger, H. G. Tandem Knoevenagel–Michael-Cyclocondensation Reactions of Malononitrile, Various Aldehydes and Dimedone using Acetic Acid Functionalized Ionic Liquid. New J. Chem. 2014, 38, 2342–2347. (b) Ahadi, S.; Kamranifard, T.; Armaghan, M.; Khavasi, H. R.; Bazgir, A. Domino Knoevenagel Condensation–Michael Addition–Cyclization for the Diastereoselective Synthesis of Dihydrofuropyrido[2,3-d]Pyrimidines via Pyridinium Ylides in Water. RSC Adv. 2014, 4, 7296–7300. DOI: 10.1039/C3RA45795H. (c) Al-Majid, A. M.; Islam, M. S.; Barakat, A.; Al-Qahtani, N. J.; Yousuf, S.; Choudhary, M. I. Tandem Knoevenagel–Michael Reactions in Aqueous Diethylamine Medium: A Greener and Efficient Approach Toward Bis-Dimedone Derivatives. Arab. J. Chem. 2017, 10, 185–193. doi:10.1016/j.arabjc.2014.04.008. (d) Deb, M. L.; Bhuyan, P. J. Uncatalyzed Michael Addition of Indoles: Synthesis of Some Novel 3-Alkylated Indoles via a Three-Component Reaction in Solvent-Free Conditions. Tetrahedron Lett. 2007, 48, 2159–2163. doi:10.1016/j.tetlet.2007.01.105. doi:10.1039/c3nj01509b.
  • (a) Baruah, B.; Deb, M. L. Catalyst-Free and Additive-Free Reactions Enabling C–C Bond Formation: A Journey Towards a Sustainable Future. Org. Biomol. Chem. 2021, 19, 1191–1229; (b) Saha, M.; Luireingam, T. S.; Merry, T.; Pal, A. K. Catalyst-Free, Knoevenagel–Michael Addition Reaction of Dimedone under Microwave Irradiation: An Efficient One-pot Synthesis of Polyhydroquinoline Derivatives. J. Het. Chem. 2013, 50, 941–944. DOI: 10.1002/jhet.1541. (c) Maloo, P.; Roy, T. K.; Sawant, D. M.; Pardasani, R. T.; Salunkhe, M. M. A Catalyst-Free, One-Pot Multicomponent Synthesis of Spiro-Benzimidazoquinazolinones via a Knoevenagel–Michael-Imine Pathway: A Microwave Assisted Approach. RSC Adv. 2016, 6, 41897–41906. doi:10.1039/C6RA05322J. (d) Elinson, M. N.; Sokolova, O. O.; Nasybullin, R. F. Catalyst-Free Tandem Knoevenagel-Michael Reaction of Aldehydes and Pyrazolin-5-One: Fast and Convenient Approach to Medicinally Relevant 4,4′-(Arylmethylene)bis(1H-pyrazol-5-ol)s. Heterocycl. Commun. 2015, 21, 97–101. doi:10.1515/hc-2015-0046. (e) Xie, Z.-B.; Wang, N.; Wu, M.-Y.; He, T.; Le, Z.-G.; Yu, X.-Q. Catalyst-Free and Solvent-Free Michael Addition of 1,3-Dicarbonyl Compounds to Nitroalkenes by a Grinding Method. Beilstein J. Org. Chem. 2012; 8, 534–538. doi:10.3762/bjoc.8.61. doi:10.1039/D0OB02149K.
  • (a) Wawro, A. M.; Muraoka, T.; Kato, M.; Kinbara, K. Multigram Chromatography-Free Synthesis of Octa(Ethylene Glycol) p-Toluenesulfonate. Org. Chem. Front. 2016, 3, 1524–1534. (b) Vanoost, A.; Petit, L. A Chromatography-Free Synthesis of Racemic Salbutamol Hemisulfate. Tetrahedron Lett. 2020, 61, 2020, 152126. DOI: 10.1016/j.tetlet.2020.152126. (c) Qi, T.; Deschrijver, T.; Huc, I. Large-Scale and Chromatography-Free Synthesis of an Octameric Quinoline-Based Aromatic Amide Helical Foldamer. Nat. Protoc. 2013, 8, 693–708. doi:10.1038/nprot.2013.029. (d) Zhang, Y.; Ouyang, Y.; Luo, Z.; Dong, S. Convenient, Column Chromatography-Free, and Effective Synthesis of Benzo-21-crown-7 and Its Derivatives. Eur. J. Org. Chem. 2019, 4741–4744. doi:10.1002/ejoc.201900712. (e) Barrett, A. G.; Roberts, R. S.; Zécri, F. J.; Cramp, S. M. Chromatography-Free Synthesis of 1,2,4-Oxadiazoles Using ROMPGEL-Supported Acylating Reagents. Comb. Chem. High Throughput Screen. 2000, 3, 131–138. doi:10.2174/1386207003331733. (f) Sheng, T.; Yu, C.; Wang, Y.; Li, S.; Wu, H.; Gu, Q.; Meng, G.; Herron, A. N.; Gao, X. Chromatography-Free Synthesis of β-Carboline 1-Hydrazides and an Investigation of the Mechanism of Their Bioactivity: The Discovery of β-Carbolines as Promising Antifungal and Antibacterial Candidates. J. Med. Chem. 2023, 66, 9040–9056. doi:10.1021/acs.jmedchem.3c00650. doi:10.1039/C6QO00398B.
  • (a) Henneberg, F.; Chari, A. Chromatography-Free Purification Strategies for Large Biological Macromolecular Complexes Involving Fractionated PEG Precipitation and Density Gradients. Life. 2021, 11, 1289. (b) Bellucci, J. J.; Amiram, M.; Bhattacharyya, J.; McCafferty, D.; Chilkoti, A. Three-in-One Chromatography-Free Purification, Tag Removal, and Site-Specific Modification of Recombinant Fusion Proteins Using Sortase A and Elastin-like Polypeptides. Angew. Chem. Int. Ed. 2013, 52, 3703–3708. DOI: 10.1002/anie.201208292. (c) Akhani, R. C.; Patel, A. T.; Patel, M. J.; Dedania, S. R.; Patel, J. S.; Patel, D. H. Column Chromatography Free Purification of Recombinant α-Amylase from Bacillus licheniformis by Tagging with Hydrophobic Elastin Like Polypeptide. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 2018, 88, 1249–1255. doi:10.1007/s40011-017-0862-z. (d) Hartmann, B. M.; Kaar, W.; Yoo, I. K.; Lua, L. H. L.; Falconer, R. J.; Middelberg, A. P. J. The Chromatography-Free Release, Isolation and Purification of Recombinant Peptide for Fibril Self-Assembly. Biotechnol. Bioeng. 2009, 104, 973–985. doi:10.1002/bit.22447. doi:10.3390/life11121289.
  • (a) Muhiebes, R. M.; Fatolahi, L.; Sajjadifar, S. L- Proline Catalyzed Multicomponent Reaction for Simple and Efficient Synthesis of Tetrahydropyridines Derivatives. Asian J. Green Chem. 2023, 7, 121–131. DOI: 10.22034/ajgc.2023.393683.1380.(b) Mhaibes, R. M.; Arzehgar, Z.; Heydari, M. M.; Fatolahi, L. ZnO Nanoparticles: A Highly Efficient and Recyclable Catalyst for Tandem Knoevenagel-Michael-Cyclocondensation Reaction. Asian J. Green Chem. 2023, 7, 1–8. doi:10.22034/ajgc.2023.1.1. (c) Farajpour, M.; Vahdat, S. M.; Baghbanian, S. M.; Hatami, M. Ag-SiO2 Nanoparticles: Benign, Expedient, and Facile Nano Catalyst in Synthesis of Decahydroacridines. Chem. Methodol. 2023, 7, 540–551. doi:10.22034/chemm.2023.386678.1653. (d) Amiri, M. A.; Younesi, H.; Aqmashhadi, H. K.; Pasha, G. F.; Asghari, S.; Tajbakhsh, M. Efficient Catalytic Synthesis of Xanthenes with Copper Immobilized on Amine-Modified NaY. Chem. Methodol. 2024, 8, 1–22. doi:10.48309/chemm.2024.424058.1737. (e) Rezayati, S.; Moghadam, M. M.; Naserifar, Z.; Ramazani, A. Schiff Base Complex of Copper Immobilized on Core-Shell Magnetic Nanoparticles Catalyzed One-Pot Syntheses of Polyhydroquinoline Derivatives under Mild Conditions Supported by a DFT Study. Inorg. Chem. 2024, 63, 1652–1673. doi:10.1021/acs.inorgchem.3c03861. (f) Rezayati, S.; Dinmohammadi, G.; Ramazani, A.; Sajjadifar, S. Mortar–Pestle Grinding Technique as an Efficient and Green Method Accelerates the Tandem Knoevenagel–Michael Cyclocondensation Reaction in the Presence of Ethylenediamine Immobilized on the Magnetite Nanoparticles. Polycycl. Aromat. Compd. 2023, 43, 5869–5891. doi:10.1080/10406638.2022.2110506. (g) Deka, B.; Baruah, P. K.; Deb, M. L. Multi-Component Synthesis of 3-Substituted Indoles and their Cyclisation to α-Carbolines via I2-Promoted Intramolecular C2 Oxidative Amination/Aromatisation at Room Temperature. Org. Biomol. Chem. 2018, 16, 7806–7810. doi:10.1039/C8OB02362J. (h) Dömling, A.; Wang, W.; Wang, K. Chemistry and Biology of Multicomponent Reactions. Chem. Rev. 2012, 112, 3083–3135. doi:10.1021/cr100233r.
  • (a) Ziarani, G. M.; Aleali, F.; Lashgari, N. Recent applications of barbituric acid in multicomponent reactions. RSC Adv. 2016, 6, 50895–50922. DOI: 10.1039/C6RA09874F.(b) Fahad, M. M. Barbituric Acids: A Review of Preparation, Reactions and Biological Applications. Biomed. Chem. Sci. 2022, 1, 295–305. doi:10.48112/bcs.v1i4.294. (c) Nikoofar, K.; Khademi, Z. Barbituric Acids in Organic Transformations, An Outlook to the Reaction Media. Mini-Rev. Org. Chem. 2017, 14, 143–173. doi:10.2174/1570193X14666170206122416. (d) Baruah, B.; Naidu, P. S.; Borah, P.; Bhuyan, P. J. Synthesis of 5-Alkylated Barbituric Acids and 3-Alkylated Indoles via Microwave-Assisted Three-Component Reactions in Solvent-Free Conditions using Hantzsch 1,4-Dihydropyridines as Reducing Agents. Mol. Divers. 2012, 16, 291–298. doi:10.1007/s11030-012-9359-0.
  • Jordan, A. C. Veronal: A New Hypnotic. Br. Med. J. 1904, 1, 538–539. DOI: 10.1136/bmj.1.2253.538-a.
  • Miller, R. R.; DeYoung, D. V.; Paxinos, J. Hypnotic Drugs. Postgrad. Med. J. 1970, 46, 314–317. DOI: 10.1136/pgmj.46.535.314.
  • Brodie, M. J.; Kwan, P. Current Position of Phenobarbital in Epilepsy and its Future. Epilepsia, 2012, 53, 40–46. DOI: 10.1111/epi.12027.
  • (a) Chatterjee, T.; Pattanayak, P.; Satyanarayana, A. N. V.; Mukherjee, N. Recent Advances in Developing Highly Atom-Economic C–H Annulation Reactions in Water. Curr. Opin. Green Sustain. Chem. 2023, 41, 100826. DOI: 10.1016/j.cogsc.2023.100826.(b) Newhouse, T.; Baran, P. S.; Hoffmann, R. W. The Economies of Synthesis. Chem. Soc. Rev. 2009, 38, 3010–3021. doi:10.1039/B821200G. (c) Mal, K.; Mukhopadhyay, C. Chromatography Free Expeditious Green Synthesis of 3-Hydroxy-2-Pyrrolidone Derivatives under Eco-Friendly Conditions via the Oxidation of Benzyl Amines without Catalyst. J. Mol. Struct. 2022, 1265, 133377. doi:10.1016/j.molstruc.2022.133377. (d) Deb, M. L.; Pegu, C. D.; Borpatra, P. J.; Saikia, P. J.; Baruah, P. K. Catalyst-Free Multi-Component Cascade C–H-Functionalization in Water using Molecular Oxygen: An Approach to 1,3-Oxazines. Green Chem. 2017, 19, 4036–4042. doi:10.1039/C7GC01494E.
  • Deb, M. L.; Bhuyan, P. J. Uncatalysed Knoevenagel Condensation in Aqueous Medium at Room Temperature. Tetrahedron Lett. 2005, 46, 6453–6456. DOI: 10.1016/j.tetlet.2005.07.111.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.