Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 21, 1991 - Issue 1
28
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Aldol Condensation: A Stereoselective Approach to Tetrahydrophenanthrene Derivatives and 3-Oxa-bicyclo[3.3.1]nonan-6-ones

, , &
Pages 31-42 | Received 26 Oct 1990, Published online: 24 Sep 2006

References

  • Edwards , J. A. and Fried , J. H. U.S. 3880889 . 1975 .
  • 1970 . Chem. Abstr. , 73 : 45217z
  • Zoretic , P. A. , Dickerson , S. H. , Yu , B.-C. , Biggers , M. S. , Chambers , R. J. , Biggers , C. K. and Caspar , M. L. 1989 . Synth. Commun. , 19 : 2869
  • Zoretic , P. A. , Yu , B.-C. , Biggers , M. S. and Casper , M. L. 1990 . J. Org. Chem. , 55 : 3954
  • Zoretic , P. A. , Yu , B.-C. and Caspar , M. L. 1989 . Synth. Commun. , 19 : 1859
  • Daniewski , A. R. and Kiegiel , J. 1988 . J. Org. Chem. , 53 : 5535 and references within
  • Nelson , N. A. and Wollensak , J. C. 1958 . J. Am. Chem. Soc. , 80 : 6266
  • House , H. O. , Crumrine , D. S. , Teranishi , A. Y. and Olmstead , H. D. 1973 . J. Am. Chem. Soc. , 95 : 3310
  • Evans , D. A. , Nelson , J. V. and Vogel , E. 1979 . J. Am. Chem. Soc. , 101 : 6120
  • Nakamura , E. and Kuwajima , I. 1983 . Tetrahedron Lett. , 24 : 3347 For high erythro kinetic diastereoselectivity resulting from tina, zirconiumb and titaniumc of cyclohexanone see:
  • Evans , D. A. and McGee , L. K. 1980 . Tetrahedron Lett. , 21 : 3975
  • Yamamoto , Y. and Maruyama , K. 1980 . Tetrahedron Lett. , 21 : 4607
  • Nakamura , E. and Kuwajima , I. 1983 . Tetrahedron Lett. , 24 : 3343
  • Heathcock , C. H. , Buse , C. T. , Kleschick , W. A. , Pirrung , M. C. , Sohn , J. E. and Lampe , J. 1980 . J. Org. Chem. , 45 : 1066 and citations within
  • Laszlo , Ilona . 1965 . Rev. Trav. Chim. , 84 ( 2 ) : 251 – 4 . For studies involving [3.3.1] bicyclic and 3-oxa-[3.3.1]-bicyclic systems that demonstrate that these compounds exist in a double chair conformation see:
  • Bucci , P. , Lippi , G. and Macchia , B. 1970 . J. Org. Chem. , 35 : 913
  • It was further noted that washing with NaHSO3 was necessary to affect cyclization. Presumably a catalytic amount of acid is required for this process
  • It was also observed that the respective equatorial protons at C-7 and C-8 could be identified as dd's, since the absence of e,e coupling was clearly demonstrated in the COSY spectra
  • The 1H NMR data for the compounds in this work are: 3a 1H NMR (CDCl3) δ 7.20 (m, 1 H, m-Ar H), 6.73 (m, 3 H, o-and p-Ar H's), 5.30–5.54 (m, 1 H, -CH═CH2), 5.03–5.24 (m, 2 H, -CH═CH 2), 4.39 [s, 1 H, CH(OR)2], 3.83–3.97 (m, 1 H, CHOH), 3.78 (s, 3 H, OCH3), 3.30–3.53 (m, 2 H, CHEt2), 3.05–3.19 (overlapping C3-H and ArCH aHb, 2 H), 3.05 (d, 1 H, OH, J=11 Hz), 2.85 (dd, 1 H, Ar-CHa H b, Jvic=7 and Jgem=13 Hz), 2.08–2.50 (overlapping C2a-H, C5a-H, C6a-H and C6e-H, 4 H), 1.79–1.91 (m, 1 H, C5e-H), 1.30–1.68 [m, 8 H, CH-(CH 2-CH3)2], 1.0 (s, 3 H, CH3), 0.78–0.91 [m, 12 H, CH-(CH2-CH3)2]; 3b 1H NMR (CDCl3) δ 7.22 (m, 1 H, m-Ar H), 6.81 (m, 3 H, o- and p-Ar H's), 5.57–5.78 (m, 1 H, -CH═CH2), 5.10–5.32 (m, 2 H, -CH═CH 2), 4.49 [s, 1 H, CH(OR)2], 3.80 (s, 3 H, OCH3), 3.75–3.90 (m, 1 H, CHOH), 3.53 (d, 1 H, OH, J=11 Hz), 3.35–3.60 (m, 2 H, CHEt2), 2.68–2.97 (overlapping C2-H, C3-H and ArCH 2, 4 H), 2.13–2.55 (overlapping C5a-H, C6a-H and C6e-H, 3 H), 1.2–1.8 [overlapping C5e-H and CH-(CH2-CH3)2, 9 H], 1.10 (s, 3 H, CH3), 0.80–1.0 [m, 12 H, CH-(CH2-CH3)2]; 5 1H NMR (CDCl3) δ 9.55 (s, 1 H, CHO), 7.85 (d, 1 H, C9-H, J9–10=10.4 Hz), 7.56 (d, 1 H, C10-H, J9–10=10.4 Hz), 7.10–7.28 (m, 3 H,) 5.76–5.96 (m, 1 H, CH═CH2), 5.08–5.16 (m, 2 H, CH═CH 2), 3.91 (s, 3 H, OCH3), 3.80 (d, 1 H, CH-CH═CH2, J=10.4 Hz), 3.11–3.20 (m, 2 H), 2.12–2.29 (m, 1 H), 1.81–1.98 (m, 1 H), 1.11 (s, 3 H, CH3); 6a 1H NMR (500 MHz, CDCl3) δ 7.21 (t, 1 H, m-Ar H), 6.77 (m, 3 H, o- and p-Ar H's), 5.74 (m, 1 H, C10-H), 5.18 (m, 2 H, C11-H's), 4.58 (d, 1 H, C2-H, J2a-8a=0.9 Hz), 4.18 (ddd, 1 H, C4-H, J4–5=0.9, J4–5=0.9 J4–12=6.3 and J4–12′=8.8 Hz), 3.78 (s, 3 H, Ar OCH3), 3.40 (s, 3 H, C2-OCH3), 3.20 (dd, 1 H, ArCH12 H 12′, J4–12′=8.8 and J12–12′=13.8 Hz), 2.92 (ddd, 1 H, C7a-H, J7a-8a=12.1, and J7a-7e=16.9 Hz), 2.84 (dd, 1 H, ArCH 12H12′, J4–12=6.3 and J12–12′=13.8 Hz), 2.74 (br d, 1 H, C9-H, J9–10=8.2 Hz), 2.40 (br s, 1 H, C5-H), 2.30 (dd, 1 H, C7e-H, J7e-8a=7.2 and J7a-7e=16.9 Hz), 2.12 (dd, 1 H, C8e-H, J7a-8e=9.1 and J8a-8e=13.9 Hz), 1.51 (dddd, 1 H, C8a-H, J2a-8a=1, J7e-8a=7.1, J7a-8a=12.1 and J8a-8e=13.8 Hz), 0.96 (s, 3 H, CH3); chemical shifts were determined from the 1H COSY spectrum; 6b 1H NMR (500 MHz, CDCl3) δ 7.20 (t, 1 H, m-Ar H), 6.73 (m, 3 H, o- and p-Ar H's), 5.71 (m, 1 H, C10-H), 5.17 (m, 2 H, C11-H's), 4.45 (s, 1 H, C2-H), 4.05 (dd, 1 H, C4-H, J4–12=8.8 and J4–12′=6.4 Hz), 3.77 (s, 3 H, Ar OCH 3), 3.46 (s, 3 H, C2-OCH3), 3.19–3.28 (two overlapping dd's, 2 H, ArCH 12 H 12′, J4–12′=6, J4–12=9 and J12–12′=14 Hz), 3.20 (br d, 1 H, C9-H, J9–10=9 Hz), 2.87 (ddd, 1 H, C7a-H, J7a-8c=8.9, J7a-8a=12.5 and J7a-7e=16.3 Hz), 2.39 (br s, 1 H, C5-H), 2.33 (dd, 1 H, C7e-H, J7e-8a=6.9 and J7a-7e=16.3 Hz), 1.82 (ddd, 1 H, C8a-H, J7e-8a=6.9 Hz, J7a-8a=12.5 and J8a-8e=14.0 Hz), 1.72 (br dd, 1 H, C8e-H, J7a-8e=9 and J8a-8e=14 Hz), 0.95 (s, 3 H, CH3); chemical shifts were determined from the 1H COSY spectrum; 7a 1H NMR (CDCl3) δ 7.20 (t, 1 H, m-Ar H), 6.80 (m, 3 H, o- and p-Ar H's), 5.70 (m, 1 H, C10-H), 5.13 (m, 2 H, C11-H's), 4.65 (s, 1 H, C2-H), 4.30 (dt, 1 H, C4-H, J4–5=2 Hz and J4–12=7), 3.80 (s, 3 H, OCH3), 3.38 [p, 1 H, CH(Et)2, J=5.8 Hz], 2.90 (br d, 1 H, C9-H, J9–10=7.7 Hz), ∼2.82 (apparent ddd, 1 H, C7a-H, J7a-8e=9, J7a-8a=12 and J7a-7e=17 Hz), 2.60 (d, 2 H, ArCH 12,H 12′, J4–12=7.2 Hz), 2.43 (br s, 1 H, C5-H), ∼2.42 (br dd, 1 H, C7e-H, J7e-8a=7 Hz, J7a-7e=16 Hz), 1.71–1.91 (overlapping C8e-H and C8a-H, 2 H), 1.32–1.55 [m, 4 H, (CH 2-CH3)2], 0.90 (s, 3 H, C1-CH3), 0.84 (t, 3 H, CH2-CH 3, J=7 Hz), 0.79 (t, 3 H, CH2-CH 3, J=7 Hz); chemical shift were determined from the 1H COSY spectrum; 7b 1H NMR (CDCl3) δ 7.22 (t, 1 H, m-Ar H), 6.81 (m, 3 H, o- and p-Ar H), 5.72 (m, 1 H, C10-H), 5.14 (m, 2 H, C11-H's), 4.37 (d, 1 H, C2-H, J2a-8a=1.0 Hz), 3.85 (dt, 1 H, C4-H, J4–5=1.8 and J4–12=6.8 Hz), 3.80 (s, 3 H, OCH3), 3.47 [p, 1 H, CH(Et)2, J=5.9 Hz], 2.90 (ddd, 1 H, C7a-H, J7a-8e=8.8 and J7a-8a=12 Hz, J7a-7e=17 Hz), 2.64 (d, 2 H, ArCH 12 H 12′, J4–12=6.8 Hz), 2.43 (br s, 1 H, C5-H), 2.25–2.39 (overlapping C7e-H and C9-H, 2 H), 2.23 (dd, 1 H, C8e-H, J7a-8e=8.8 and J8a-8e=14 Hz), 1.41–1.60 [overlapping C8a-H and (CH2-CH3)2, 5 H], 0.90 (s, 3 H, C1-CH3), 0.88 [overlapping t's, 6 H, (CH2-CH 3)2]; chemical shifts were determined from the 1H COSY spectrum; 8a 1H NMR (CDCI3) δ 7.22 (t, 1 H, m-Ar H), 6.78 (m, 3 H o- and p-Ar H's), 5.76 (m, 1 H, C10-H), 5.20 (m, 2 H, C11-H's), 4.73 (d, 1 H, C2-H, J2a-8a=1.0 Hz), 4.17 (ddd, 1 H, C4-H, J4–5=1.1, J4–12=6.6 and J4–12′=8.7 Hz), 3.79 (s, 3 H, OCH3), 3.32 [p, 1 H, CH(Et)2, J=5.8 Hz], ∼3.17 (dd, 1 H, ArCH12 H 12′, J4–12′=8.7 and J12–12′=14.2 Hz), 2.97 (ddd, 1 H, C7a-H, J7a-8e=9.0, J7a-8a=12 and J7a-7e=16 Hz), ∼2.85 (dd, 1 H, ArCH 12H12′ J4–12=6.6and J12–12′=14.2 Hz), 2.76 (br d, 1 H, C9-H, J9–10=8 Hz), 2.38 (br s, 1 H, C5-H), 2.30 (dd, 1 H, C7e-H, dd, J7e-8a=6.2 and J7a-7e=16 Hz), 2.20 (dd, 1 H, C8e-H, J7a-8e=9 and J8a-8e=12 Hz], 1.35–1.54 [overlapping C8a-H and (CH 2-CH3)2, 5 H], 0.96 (s, 3 H, C1-CH3), 0.89 (t, 3 H, CH2-CH 3, J=7 Hz), 0.78 (t, 3 H, CH2-CH 3, J=7 Hz); chemical shifts were determined from the 1H COSY spectrum; 8b 1H NMR (CDCI33) ° 7.20 (t, 1 H, m-Ar H), 6.70 (m, 3 H o- and p-Ar H's), 5.73 (m, 1 H, C10-H), 5.19 (m, 2 H, C11-H's), 4.73 (s, 1 H, C2-H), 3.98 (dd, 1 H, C4-H, J4–12=5.0 and J4–12′=10 Hz), 3.77 (s, 3 H, OCH3), 3.75 [m, 1 H, CH(Et)2], ∼3.3 (dd, 1 H, ArCH12H12′, J4–12′=10.3 and J 12–12′=14 Hz), ∼3.2 (dd, 1 H, ArCH 12 H 12′, J 4–12=5, and J 12–12′=14 Hz), 3.22 (d, 1 H, C9-H, J9–10=8 Hz), 2.84 (ddd, 1 H, C7a-H, J7a-8e=9.4, J7a-8a=11.9 and J 7a-7e=16.3 Hz), 2.37 (br s, 1 H, C5-H), 2.26 (dd, 1 H, C7e-H, J 7e-8a=6 and, J7a-7e=16 Hz), 1.50–1.93 (overlapping C8a-H, C8e-H and (CH 2-CH 3)2, 6 H], 0.95 (s, 3 H, C1-CH3), 0.89 [t, 6 H, (CH2-CH 3)2], J=7 Hz]; chemical shifts were determined from the 1 H COSY spectrum
  • Satisfactory analytical and high-resolution mass spectral data were consistent with the proposed structures

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.