Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 29, 1999 - Issue 3
71
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

The Preparation of 2-(1-Phenyl-5-Phenyl or 5-Substituted Phenyl-1H-Pyrazol-3-Yl)Phenols from Trilithiated 2′-Hydroxyacetophenone Phenylhydrazone and Aromatic Esters

, , , &
Pages 495-506 | Received 04 Aug 1998, Published online: 17 Sep 2007

References

  • Elguero , J. 1984 . Comprehensive Heterocyclic Chemistry , Edited by: Potts , K. T. Vol. 5 , 167 – 343 . New York, New York : Pergamon Press . Part 4A (4.04)
  • Fusco , R. 1967 . The Chemistry Of Heterocyclic Compounds , Edited by: Weissberger , A. 1 – 137 . New York, New York : Interscience Publishers .
  • Jarboe , H. 1967 . The Chemistry of Heterocyclic Compounds , Edited by: Weissberger , A. 177 – 285 . New York, New York : Interscience Publishers .
  • Kost , A. N. and Grandberg , I. 1966 . Advances in Heterocyclic Chemistry , 6 : 347
  • Ahmad , R. , Khan , M. N. and Kausar , N. 1996 . Arabian J. Sci. Eng. , 21 : 393
  • Baker , W. , Harborne , J. B. and Ollis , W. D. 1952 . J. Chem. SOC. , 1303
  • Kallay , F. , Janzso , G. and Koczor , I. 1968 . Tetrahedron Lett , 3853
  • Song , G. ‐Y. and Ahn , B. ‐Z. 1994 . Arch. Pharmacol. Res. , 17 : 434
  • Ahmad , R. and Zia‐UI‐Haq , M. 1995 . Turk. J. Chem. , 19 : 101
  • Murthy , M. , Sree , R. and Rao , E. V. 1985 . Indian Drugs , 22 : 462
  • Murthy , M. , Sree , R. , Rao , E. V. and Ranganatham , P. 1985 . Indian Drugs , 22 : 247
  • Joshi , M. G. and Wadokar , K. N. 1982 . Indian J Chem. Sect. B , 21B : 689
  • Addison , A. W. and Burke , P. J. 1981 . J. Heterocycl. Chem. , 18 : 803
  • Udachi , Yu. M. , Charsinova , L. V. , Przheval'skii , N. M. , Grandger , I. I. and Tokmakov , G. P. 1980 . Izv. Timiryazeuk S‐kh. Akad , 162
  • Ahamad , R. , Zai‐ul‐Haq , M. , Khan , N. and Kausar , N. 1996 . Arabian J. Sci. Eng. , 21 : 393
  • Sharma , T. C. , Rojindae , B. D. D. and Kale , A. V. 1987 . Indian J. Chem., Sect. B , 26B : 687
  • Sharma , T. C. , Pawar , S. R. and Reddy , N. J. 1983 . Acta Chim. Hung. , 112 : 159
  • Ferlux . Fr. Demande . 2, 104,932 . 1972 . Chem. Abstr. 1972, 77, 164690. [M.p., not easily available]
  • Cummings , R. T. , DiZio , J. P. and Krafft , G. A. 1988 . Tetrahedron Lett. , 29 : 69
  • Nagarathnam , D. and Cushman , M. 1991 . Tetrahedron , 47 : 5071
  • Nishinaga , A. H. , Maruyama , K. and Mashino , T. 1992 . Synth. , 839
  • Cunningham , B. D. M. , Lowe , P. R. and Treadgill , M. D. 1989 . J. Chem. SOC., Perkin Trans II , 1275
  • Bansal , V. , Singh , P. K. and Rhanna , R. N. 1996 . Indian J. Chem., Sect B, Org. Chem. Incl. Med. Chem. , 35B : 586
  • Ahmad , R. , Malik , M. A. and Zia‐U1‐Haq , M. 1990 . J. Chem. SOC. Pak. , 12 : 352
  • Wallet , J. ‐C. and Gaydou , E. M. 1996 . Synthetic Communications , 26 : 4097
  • Sarma , G. V. S. , Azam , M. A. and Sureshi , B. 1996 . Indian Drugs , 33 : 267
  • Choshi , Horimoto S. , Wang , C. Y. , Magase , H. , Ichikawa , M. , Sugino , E. and Hibino , S. 1992 . Chem. Pharm. Bull. , 40 : 1047
  • Ishihara , H. and Hirahayashi , Y. 1978 . Chem. Lett. , 1007
  • L'Abbe , G. and Mathys , G. 1974 . J. Heterocycl. Chem. , 11 : 613
  • Mazat , C. L. , Beam , C. F. and Hines , M. A. 1990 . Synthetic Communications , 20 : 253
  • Citation name: 5H ‐Pyrazolo‐ [ 1,5‐c ][ 1,3]‐benzoxazin‐5‐ones
  • Martinez , M. L. , Cooper , W. C. and Chou , P. T. 1992 . Phys. Lett. , 193 : 151
  • Martinez , M. L. , Studer , S. L. and Chou , P. T. 1991 . J. Am. Chem. Soc. , 113 : 5881
  • Sengupta , P. K. and Kasha , M. 1979 . Chem. Phys. Lett , 68 : 382
  • Itoh , M. and Fujiwara , Y. 1985 . J. Am. Chem. Soc. , 107 : 1561
  • Mirone , P. and Vampiri , M. 1952 . Atti. Accd, Nml. Lincei., Rend. Classe Sci. Fis., Mate Nat. , 12 : 583 Chem. Abstr. 1952, 46, 9423
  • Combustion analyses were performed by Quantitative Technologies, Inc., P. O. Box 470, Salem Industrial Park, Bldg. 5, Whitehouse, NJ 08888. Molecular formulas are in the Table: Compd. No., Anal. Calcd. 1 Found [% C, H, and/or N]: 1. C, 80.96180.69; H, 5.5615.70; N, 8.5818.22. 2. C, 74.18174.06; H, 5.4115.37; N, 7.5217.40. 3. C, 71.62171.59; H, 5.5115.54; N, 6.961 6.87. 4. C, 76.811 76.59; H,4.91/5.01;N, 8.5318.41. 5. C, 74.18174.31;H, 5.41/5.46;N, 7.521 7.49. 6. C, 81.49181.56; H, 6.5616.57;N, 7.6017.56. 7. N, 8.0817.94. 8. C, 76,81176.58; H, 4.9115.05; N, 8.5318.32. 9. C, 77.72177.63; H, 5.9516.05; N, 11.82111.68. 10. C,81.15/81.52;H, 5.9216.14; N,8.23/8.12. 11. N, 8.971 8.90. 12. C, 76.66176.39; H, 4.8214.80; N, 13.41113.23. 13. C, 76.66176.34; H, 4.8214.76; N, 13.411 13.27. 14. C, 81.98181.93; H, 4.8214.65;N, 9.561 9.38
  • Fourier Transform infrared spectra were obtained on a Nicolet Impact 4 10 FT‐IR. Proton magnetic resonance spectra were obtained with a Varian Associates EM‐360L nuclear magnetic resonance spectrometer, and chemical shifts are recorded in δ ppm downfield from an internal tetramethylsilane standard. From Table: Compd. No., FT‐IR data (paraffin oil ‐ all compounds), 'H NMR data (varied solvents ‐ indicated). 1. H NMR (CDCl3) δ ppm 2.40 (s, 3H, ArCH,), 6.80 (s, IH, C,‐H) 7.67–8.67 (m, 13H, C,‐H and ArH) and 11.OO (s, 1H, ArOH, exch with D,O). 2. FT‐IR, 3 167 (OH) and 1584 (ArH) cm−1;1. H NMR (CDCl3) δ ppm 3.67 and 3.90 (s, 3H and 3H, ArOCH3), 6.73–7.83 (m, 13H, C4−H and Arm and 11.00 (s, lH, ArOH exch. with D2 O). 3. FT‐IR, 3167 (OH) and 1584 (ArH) cm−1;1. H NMR (CDCl3,) δ ppm 3.70 (s, 6H, ArOCH,), 3.93 (s, 3H, ArOCH3), 6.53 (s, 2H, ArH), 6.93 (s, 1H, C4−H) and 7.00 ‐7.80 (m, 9H, ArH), and 10.93 (s, 1H, ArOH, exch. with D2O). 4. FT‐IR, 3133–3381 (OH) cm−1;1. H NMR (DMSO‐d6) δ ppm 6.80–8.13 (m, 14H, C4−H and ArH) and 9.73–10.80 (broad, 2H, ArOH, exch. with D2O). 5. FT‐IR, 3 181 (OH) and 1591 (ArH) cm−1;1. H NMR (CDCl3) δ ppm, 3.70 (s, 6H, ArOCH3), 6.47 and 6.80–7.87 (s and m, 13H, C4−H and ArH) and 10.93 (s, 1H, ArOH exch. With D2O). 6. FT‐IR, 3181 (OH) and 1591 (Arm cm−1;1. H NMR(CDC13) δ ppm, 1.33 (s, 9H, ArC(CH3) 3)6.87–7.80 (m, 14H, C4−H and ArH) and 11.00 (s, 1H, ArOH exch. with D2O). 7. FT‐IR, 3 181 (OH) and 1618, 1605 and 1598 (several ArH) cm−1;1. H NMR (CDCl3) δ ppm 6.93 (s, 1H, C4−H), 7.67–8.10 (m, 13H. ArH) and 10.90 (s, 1H, ArOH, exch. with D2O). 8. FT‐IR, 3381,3167‐ 3188 (OH) and 1584 (ArH) cm−1;1. HNMR (DMSO‐d6, and CDC13) δ ppm, 6.87 (s, 1H, C4−H), 7.00–7.93 (m, 13H, ArH), 9.53 (s‐broad, lH, ArOH exch. with D,O) and 10.80 (s‐sharp, 1H, ArOH exch. with th D2O). 9. FT‐IR, 3174 (OH) and 1611 (ArH) cm−1; 1. H NMR (CDCl3) δ ppm, 2.98 (s, 6H, N(CH,)J, 6.77–7.90 (m, 14H, C,‐H and ArH) and 11.10 (s, 1H, ArOH exch. with D2O). 10. FT‐IR, 3181 (OH) and 1605 (ArH) cm−1; 1. H NMR (CDC13,) δ ppm, 2.27 (s, 6H, ArCH3), 6.90–7.83 (m, 13H, C4−H and ArH), and 11.07 (s, 1H, ArOH exch. with D2O). 11. FT‐TR, 3181 (OH) 1618 and 1584 (ArH) cm−1;1. H NMR (CDC13) δ ppm 6.90 (s, 1 9 C4−H) 7.07–7.80 (m. 14H, ArH) and 11.00 (s, 1H, ArOH exch. with D2O). 12. FT‐IR, 3153–3195 (OH), 1611, 1597, and 1591 (several ArH) cm−1;1. H NMR (CDCl3) δ ppm 7.00 (s, 1H, C4H), 7.07‐ 8.00 (m. 12H, ArH), 8.73 (s, 1H, ArH), and 10.83 (s, IH, ArOHexch. With D2 O). 13. FT‐IR, 3160–3188 (OH), 1611. 1598, 1591 (several ArH) cm−1; 1. H NMR (CDCl3) δ ppm 6.80–8.26 and 8.60 (m, 14H, C4−H and ArH), and 11.00 (s, 1H, ArOH exch. with D2O). 14. FT‐IR, 3174–3188 (OH) and 1618, 1584 with shoulder (several ArH) cm−1;1. H NMR (CDCl3) δ ppm 7.10 (s, 1H, C4−H), 7.20–8.60 (m, 19H, ArH), and 10.97 (s, 1H, ArOH exch. with D2O)
  • Duncan , D. C. , Trumbo , T. A. , Almquist , C. D. , Lentz , T. A. and Beam , C. F. 1987 . J. Heterocycl. Chem. , 24 : 555
  • Angel , A. J. , Hurst , D. R. , Williams , A. R. , French , K. L. and Beam , C. F. 1998 . Synthetic Communications
  • UV spectra were obtained with a Perkin Elmer Lambda 6 UV/VIS Spectrometer. Emission spectra were obtained on a Perkin‐Elmer LS 50B Luminescence Spectrometer
  • Siebrand , W. and Williams , D. F. 1968 . J. Chem. Phys. , 49 : 1860
  • ortfzo‐Hydroxyphenylpyrazoles 2–4, and 9 have electron donating groups such as methoxy, hydroxy, or dimethylamino in the 4‐position of the pendant 5‐substituent, and they are capable of increasing the electron density of the pyrazole ring. By contrast, compounds 13 and 14 have electron withdrawing heterocyclic nitrogen atoms in the 4‐position of the pendant‐5 substituent

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.