256
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

A Graphical Multi-Fidelity Gaussian Process Model, with Application to Emulation of Heavy-Ion Collisions

, , , &
Pages 267-281 | Received 28 Dec 2022, Accepted 30 Oct 2023, Published online: 21 Dec 2023

References

  • Ba, S., Myers, W. R., and Brenneman, W. A. (2015), “Optimal Sliced Latin Hypercube Designs,” Technometrics, 57, 479–487. DOI: 10.1080/00401706.2014.957867.
  • Bernhard, J. E., Moreland, J. S., and Bass, S. A. (2019), “Bayesian Estimation of the Specific Shear and Bulk Viscosity of Quark–gluon Plasma,” Nature Physics, 15, 1113–1117. DOI: 10.1038/s41567-019-0611-8.
  • Campbell, M. E., and Ahmed, N. R. (2016), “Distributed Data Fusion: Neighbors, Rumors, and the Art of Collective Knowledge,” IEEE Control Systems Magazine, 36, 83–109.
  • Catalano, P., and Amato, M. (2003), “An Evaluation of RANS Turbulence Modelling for Aerodynamic Applications,” Aerospace Science and Technology, 7, 493–509. DOI: 10.1016/S1270-9638(03)00061-0.
  • Chen, J., Mak, S., Joseph, V. R., and Zhang, C. (2021), “Function-on-Function kriging, with Applications to Three-Dimensional Printing of Aortic Tissues,” Technometrics, 63, 384–395. DOI: 10.1080/00401706.2020.1801255.
  • Cooper, F., and Frye, G. (1974), “Single-Particle Distribution in the Hydrodynamic and Statistical Thermodynamic Models of Multiparticle Production,” Physical Review D, 10, 186. DOI: 10.1103/PhysRevD.10.186.
  • Cutajar, K., Pullin, M., Damianou, A., Lawrence, N., and González, J. (2019), “Deep Gaussian Processes for Multi-Fidelity Modeling,” arXiv preprint arXiv:1903.07320.
  • Damianou, A., and Lawrence, N. D. (2013), “Deep Gaussian Processes,” in Artificial Intelligence and Statistics, pp. 207–215, PMLR.
  • Ding, L., Mak, S., and Wu, C. F. J. (2019), “BdryGP: A New Gaussian Process Model for Incorporating Boundary Information,” arXiv preprint arXiv:1908.08868.
  • Everett, D., Ke, W., Paquet, J.-F., Vujanovic, G., Bass, S., Du, L., Gale, C., Heffernan, M., Heinz, U., Liyanage, D., et al. (2021a), “Phenomenological Constraints on the Transport Properties of QCD Matter with Data-Driven Model Averaging,” Physical Review Letters, 126, 242301. DOI: 10.1103/PhysRevLett.126.242301.
  • Everett, D., Ke, W., Paquet, J.-F., Vujanovic, G., Bass, S. A., Du, L., Gale, C., Heffernan, M., Heinz, U., Liyanage, D., et al. (2021b), “Multisystem Bayesian Constraints on the Transport Coefficients of QCD Matter,” Physical Review C, 103, 054904. DOI: 10.1103/PhysRevC.103.054904.
  • Fang, K.-T., and Wang, Y. (1993), Number-Theoretic Methods in Statistics, Boca Raton, FL: CRC Press.
  • Forrester, A., Sobester, A., and Keane, A. (2008), Engineering Design via Surrogate Modelling: A Practical Guide, Chichester: Wiley.
  • Girard, A., Rasmussen, C. E., Quinonero-Candela, J., and Murray-Smith, R. (2002), “Gaussian Process Priors with Uncertain Inputs - Application to Multiple-Step Ahead Time Series Forecasting,” Advances in Neural Information Processing Systems, 15, 545–552.
  • Gneiting, T., and Raftery, A. E. (2007), “Strictly Proper Scoring Rules, Prediction, and Estimation,” Journal of the American Statistical Association, 102, 359–378. DOI: 10.1198/016214506000001437.
  • Golchi, S., Bingham, D. R., Chipman, H., and Campbell, D. A. (2015), “Monotone Emulation of Computer Experiments,” SIAM/ASA Journal on Uncertainty Quantification, 3, 370–392. DOI: 10.1137/140976741.
  • Gorodetsky, A. A., Jakeman, J. D., and Geraci, G. (2020), “MFNets: Learning Network Representations for Multifidelity Surrogate Modeling,” arXiv preprint arXiv:2008.02672.
  • Gorodetsky, A. A., Jakeman, J. D., Geraci, G., and Eldred, M. S. (2020), “MFNets: Multi-Fidelity Data-Riven Networks for Bayesian Learning and Prediction,” International Journal for Uncertainty Quantification, 10, 595–622. DOI: 10.1615/Int.J.UncertaintyQuantification.2020032978.
  • Gramacy, R. B. (2020), Surrogates: Gaussian Process Modeling, Design, and Optimization for the Applied Sciences, Boca Raton, FL: CRC Press.
  • Harjunpää, H., Llort Asens, M., Guenther, C., and Fagerholm, S. C. (2019), “Cell Adhesion Molecules and their Roles and Regulation in the Immune and Tumor Microenvironment,” Frontiers in Immunology, 10, 1078. DOI: 10.3389/fimmu.2019.01078.
  • Ho, M.-F., Bird, S., and Shelton, C. R. (2022), “Multifidelity Emulation for the Matter Power Spectrum Using Gaussian Processes,” Monthly Notices of the Royal Astronomical Society, 509, 2551–2565. DOI: 10.1093/mnras/stab3114.
  • Joe, S., and Kuo, F. Y. (2003), “Remark on Algorithm 659: Implementing Sobol’s Quasirandom Sequence Generator,” ACM Transactions on Mathematical Software (TOMS), 29, 49–57. DOI: 10.1145/641876.641879.
  • Johnson, M. E., Moore, L. M., and Ylvisaker, D. (1990), “Minimax and Maximin Distance Designs,” Journal of Statistical Planning and Inference, 26, 131–148. DOI: 10.1016/0378-3758(90)90122-B.
  • Kennedy, M. C., and O’Hagan, A. (2000), “Predicting the Output from a Complex Computer Code When Fast Approximations are Available,” Biometrika, 87, 1–13. DOI: 10.1093/biomet/87.1.1.
  • Kong, X., Ai, M., and Tsui, K. L. (2018), “Flexible Sliced Designs for Computer Experiments,” Annals of the Institute of Statistical Mathematics, 70, 631–646. DOI: 10.1007/s10463-017-0603-3.
  • Konomi, B. A., and Karagiannis, G. (2021), “Bayesian Analysis of Multifidelity Computer Models with Local Features and Nonnested Experimental Designs: Application to the WRF Model,” Technometrics, 63, 510–522. DOI: 10.1080/00401706.2020.1855253.
  • Korte, B. H., and Vygen, J. (2011), Combinatorial Optimization (Vol. 1), Berlin: Springer.
  • Le Gratiet, L. (2012), MuFiCokriging: Multi-Fidelity Cokriging Models, R package version 1.2.
  • Le Gratiet, L., and Garnier, J. (2014), “Recursive Co-kriging Model for Design of Computer Experiments with Multiple Levels of Fidelity,” International Journal for Uncertainty Quantification, 4, 365–386. DOI: 10.1615/Int.J.UncertaintyQuantification.2014006914.
  • López-Lopera, A. F., Bartoli, N., Lefèvre, T., and Mouton, S. (2021), “Data Fusion with Multi-Fidelity Gaussian Processes for Aerodynamic Experimental and Numerical Databases,” in SIAM Conference on Computational Science and Engineering (CSE).
  • Ma, P. (2020), “Objective Bayesian Analysis of a Cokriging Model for Hierarchical Multifidelity Codes,” SIAM/ASA Journal on Uncertainty Quantification, 8, 1358–1382. DOI: 10.1137/19M1289893.
  • Ma, P., Karagiannis, G., Konomi, B. A., Asher, T. G., Toro, G. R., and Cox, A. T. (2022), “Multifidelity Computer Model Emulation with High-Dimensional Output: An Application to Storm Surge,” Journal of the Royal Statistical Society, Series C, 71, 861–883. DOI: 10.1111/rssc.12558.
  • Mak, S., and Joseph, V. R. (2018), “Minimax and Minimax Projection Designs Using Clustering,” Journal of Computational and Graphical Statistics, 27, 166–178. DOI: 10.1080/10618600.2017.1302881.
  • Mak, S., Sung, C.-L., Wang, X., Yeh, S.-T., Chang, Y.-H., Joseph, V. R., Yang, V., and Wu, C. F. J. (2018), “An Efficient Surrogate Model for Emulation and Physics Extraction of Large Eddy Simulations,” Journal of the American Statistical Association, 113, 1443–1456. DOI: 10.1080/01621459.2017.1409123.
  • Mehlhorn, K., and Sanders, P. (2008), Algorithms and Data Structures: The Basic Toolbox (Vol. 55), Berlin: Springer.
  • Moreland, J. S., Bernhard, J. E., and Bass, S. A. (2015), “Alternative ansatz to Wounded Nucleon and Binary Collision Scaling in High-Energy Nuclear Collisions,” Physical Review C, 92, 011901. DOI: 10.1103/PhysRevC.92.011901.
  • Morris, M. D., and Mitchell, T. J. (1995), “Exploratory Designs for Computational Experiments,” Journal of Statistical Planning and Inference, 43, 381–402. DOI: 10.1016/0378-3758(94)00035-T.
  • Nocedal, J., and Wright, S. (2006), Numerical Optimization, New York: Springer.
  • Novak, J., Novak, K., Pratt, S., Vredevoogd, J., Coleman-Smith, C., and Wolpert, R. (2014), “Determining Fundamental Properties of Matter Created in Ultrarelativistic Heavy-Ion Collisions,” Physical Review C, 89, 034917. DOI: 10.1103/PhysRevC.89.034917.
  • O’Hagan, A. (1998), “A Markov Property for Covariance Structures,” Technical Report, University of Nottingham.
  • Okuda, H. (1972), “Nonphysical Noises and Instabilities in Plasma Simulation Due to a Spatial Grid,” Journal of Computational Physics, 10, 475–486. DOI: 10.1016/0021-9991(72)90048-4.
  • Perdikaris, P., Raissi, M., Damianou, A., Lawrence, N. D., and Karniadakis, G. E. (2017), “Nonlinear Information Fusion Algorithms for Data-Efficient Multi-Fidelity Modelling,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 473, 20160751. DOI: 10.1098/rspa.2016.0751.
  • Pilania, G., Gubernatis, J. E., and Lookman, T. (2017), “Multi-Fidelity Machine Learning Models for Accurate Bandgap Predictions of Solids,” Computational Materials Science, 129, 156–163. DOI: 10.1016/j.commatsci.2016.12.004.
  • Pope, S. B. (2000), Turbulent Flows, Cambridge: Cambridge University Press.
  • Pronzato, L. (2017), “Minimax and Maximin Space-Filling Designs: Some Properties and Methods for Construction,” Journal de la Société Française de Statistique, 158, 7–36.
  • Qian, P. Z. G. (2012), “Sliced Latin Hypercube Designs,” Journal of the American Statistical Association, 107, 393–399. DOI: 10.1080/01621459.2011.644132.
  • Santner, T. J., Williams, B. J., and Notz, W. I. (2019), The Design and Analysis of Computer Experiments, New York: Springer.
  • Stephenson, T. A. (2000), “An Introduction to Bayesian Network Theory and Usage,” Technical Report, IDIAP.
  • Sung, C.-L., Hung, Y., Rittase, W., Zhu, C., and Wu, C. (2020), “Calibration for Computer Experiments with Binary Responses and Application to Cell Adhesion Study,” Journal of the American Statistical Association, 115, 1664–1674. DOI: 10.1080/01621459.2019.1699419.
  • Wang, X. (2016), “Swirling Fluid Mixing and Combustion Dynamics at Supercritical Conditions,” PhD thesis, Georgia Institute of Technology.
  • Wang, X., and Berger, J. O. (2016), “Estimating Shape Constrained Functions Using Gaussian Processes,” SIAM/ASA Journal on Uncertainty Quantification, 4, 1–25. DOI: 10.1137/140955033.
  • Welch, W. J., Buck, R. J., Sacks, J., Wynn, H. P., Mitchell, T. J., and Morris, M. D. (1992), “Screening, Predicting, and Computer Experiments,” Technometrics, 34, 15–25. DOI: 10.2307/1269548.
  • Wendland, H. (2004), Scattered Data Approximation (Vol. 17), Cambridge: Cambridge University Press.
  • Wu, Z., and Schaback, R. (1993), “Local Error Estimates for Radial Basis Function Interpolation of Scattered Data,” IMA Journal of Numerical Analysis, 13, 13–27. DOI: 10.1093/imanum/13.1.13.
  • Xia, Y., Shang, J., Chen, J., and Liu, G.-P. (2009), “Networked Data Fusion with Packet Losses and Variable Delays,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39, 1107–1120.
  • You, J., Ying, R., Ren, X., Hamilton, W., and Leskovec, J. (2018), “GraphRNN: Generating Realistic Graphs with Deep Auto-Regressive Models,” in International Conference on Machine Learning, pp. 5708–5717, PMLR.
  • Zhang, M., Jiang, S., Cui, Z., Garnett, R., and Chen, Y. (2019), “D-VAE: A Variational Autoencoder for Directed Acyclic Graphs,” in Advances in Neural Information Processing Systems (Vol. 32).
  • Zhang, R., Mak, S., and Dunson, D. (2021), “Gaussian Process Subspace Regression for Model Reduction,” arXiv preprint arXiv:2107.04668.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.