298
Views
2
CrossRef citations to date
0
Altmetric
Articles

Characterization and performance of ramie fabrics treated with modified cellulase

, , , , , & show all
Pages 780-786 | Received 17 Apr 2014, Accepted 03 Jul 2014, Published online: 31 Jul 2014

References

  • Bower, B. S., Clarkson, K. A., Larenas, E. A., & Ward, M. (1998). Enlarged cellulase compositions for use in the treatment of textiles. Patent Application WO 9828411. Geneva, World Intellectual Property Organization.
  • Buschle-Diller, G., Zeronian, S. H., Pan, N., & Yoon, M. Y. (1994). Enzymatic hydrolysis of cotton, linen, ramie, and viscose rayon fabrics. Textile Research Journal, 64, 270–279.10.1177/004051759406400504
  • Cavaco-Paulo, A. (1998). Mechanism of cellulase action in textile processes. Carbohydrate Polymers, 37, 273–277.10.1016/S0144-8617(98)00070-8
  • Cavaco-Paulo, A., & Jose Rios, M. (1997). Mechanical properties of cellulase-treated fabrics analyzed. American Dyestuff Reporter, 86, 20–28.
  • Emilia, C., & Péter, S. (2004). Improving softness and hand of linen and linen-containing fabrics with finishing. AATCC Review, 4, 17–21.
  • Goda, K., Sreekala, M. S., Gomes, A., Kaji, T., & Ohgi, J. (2006). Improvement of plant based natural fibers of toughening green composites – Effect of load application during mercerization of ramie fibers. Composites Part A: Applied Science and Manufacturing, 37, 2213–2220.10.1016/j.compositesa.2005.12.014
  • Ibrahim, N. A., El-Badry, K., Eid, B. M., & Hassan, T. M. (2011). A new approach for biofinishing of cellulose-containing fabrics using acid cellulases. Carbohydrate Polymers, 83, 116–121.10.1016/j.carbpol.2010.07.025
  • Kalia, S., & Sheoran, R. (2011). Modification of ramie fibers using microwave-assisted grafting and cellulase enzyme-assisted biopolishing: A comparative study of morphology, thermal stability, and Crystallinity. International Journal of Polymer Analysis and Characterization, 16, 307–318.10.1080/1023666X.2011.587946
  • Kan, C., Yuen, C., & Jiang, S. (2008). Enzymatic treatment of linen. The Journal of The Textile Institute, 99, 363–368.10.1080/00405000701442577
  • Kan, C., Yuen, C., & Lam, Y. (2009). Effect of enzyme treatment and dyeing on the mechanical properties of linen. Coloration Technology, 125, 269–276.10.1111/(ISSN)1478-4408
  • Kantouch, A., Hebeish, A., & EI-Rafie, M. H. (1970). Action of sodium chlorite on cellulose and cellulose derivatives. Textile Research Journal, 40, 178–184.10.1177/004051757004000211
  • Khanum, H., & Shivaprakash, A. V. (2013). Product Development of Blended Milk Casein Knitted Garment (Part-I). Man-Made Textiles in India, 41, 50–56.
  • Lee, L. L., & Lee., J. C. (1987). Thermal stability of proteins in the presence of poly(ethylene glycols). Biochemistry, 26, 7813–7819.10.1021/bi00398a042
  • Lenting, H. B. M., & Warmoeskerken, M. (2001). Guidelines to come to minimized tensile strength loss upon cellulase application. Journal of Biotechnology, 89, 227–232.10.1016/S0168-1656(01)00301-7
  • Liu, Z. T., Yang, Y., Zhang, L., Liu, Z. W., & Xiong, H. (2007). Study on the cationic modification and dyeing of ramie fiber. Cellulose, 14, 337–345.10.1007/s10570-007-9117-0
  • Mamma, D., Kalantzi, S., & Christakopoulos, P. (2004). Effect of adsorption characteristics of a modified cellulase on indigo backstaining. Journal of Chemical Technology and Biotechnology, 79, 639–644.10.1002/(ISSN)1097-4660
  • Percival Zhang, Y. H., Himmel, M. E., & Mielenz, J. R. (2006). Outlook for cellulase improvement: Screening and selection strategies. Biotechnology Advances, 24, 452–481.10.1016/j.biotechadv.2006.03.003
  • Wang, N., Zha, A., & Wang, J. (2008). Study on the wicking property of polyester filament yarns. Fibers and Polymers, 9, 97–100.10.1007/s12221-008-0016-2
  • Wu, Y., Shao, J., & Fu, G. (2012). The study on the mechanism of improving of P/C fabric soil release property by cellulase washing. Journal of Zhejiang Sci-Tech University, 29, 40–43.
  • Yin, C. Y., Li, J. B., Xu, Q., Peng, Q., & liu, Y. B., & Shen, X. Y. (2007). Chemical modification of cotton cellulose in supercritical carbon dioxide: Synthesis and characterization of cellulose carbamate. Carbohydrate Polymers, 67, 147–154.10.1016/j.carbpol.2006.05.010
  • Yu, Y., Yuan, J., Wang, Q., & Fan, X. (2013). Immobilization of cellulases on the reversibly soluble polymer Eudragit S-100 for cotton treatment. Engineering in Life Sciences, 13, 194–200.10.1002/elsc.201200086
  • Yu, Y., Yuan, J., Wang, Q., Fan, X., & Wang, P. (2012). Covalent immobilization of cellulases onto a water-soluble–insoluble reversible polymer. Applied Biochemistry Biotechnology, 166, 1433–1441.10.1007/s12010-011-9536-0
  • Zhang, Y., Tang, L., An, X., Fu, E., & Ma, C. (2009). Modification of cellulase and its application to extraction of diosgenin from Dioscorea zingiberensis C.H. Wright. Biochemical Engineering Journal, 47, 80–86.10.1016/j.bej.2009.07.006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.