662
Views
33
CrossRef citations to date
0
Altmetric
Papers

Self-cleaning wool: effect of noble metals and silica on visible-light-induced functionalities of nano TiO2 colloid

, , , &
Pages 1348-1361 | Received 18 Jul 2014, Accepted 21 Nov 2014, Published online: 02 Jan 2015

References

  • Abidi, N., Cabrales, L., & Hequet, E. (2009). Functionalization of a cotton fabric surface with titania nanosols: Applications for self-cleaning and UV-protection properties. ACS Applied Materials & Interfaces, 1, 2141–2146.
  • Abidi, N., Hequet, E., Tarimala, S., & Dai, L. L. (2007). Cotton fabric surface modification for improved UV radiation protection using sol–gel process. Journal of Applied Polymer Science, 104, 111–117.10.1002/(ISSN)1097-4628
  • Akhavan Sadr, F., & Montazer, M. (2014). In situ sonosynthesis of nano TiO2 on cotton fabric. Ultrasonics Sonochemistry, 21, 681–691.10.1016/j.ultsonch.2013.09.018
  • Anderson, C., & Bard, A. J. (1995). An improved photocatalyst of TiO2/SiO2 prepared by a sol–gel synthesis. The Journal of Physical Chemistry, 99, 9882–9885.10.1021/j100024a033
  • Anderson, C., & Bard, A. J. (1997). Improved photocatalytic activity and characterization of mixed TiO2/SiO2 and TiO2/Al2O3 materials. The Journal of Physical Chemistry B, 101, 2611–2616.10.1021/jp9626982
  • Bozzi, A., Yuranova, T., Guasaquillo, I., Laub, D., & Kiwi, J. (2005). Self-cleaning of modified cotton textiles by TiO2 at low temperatures under daylight irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 174, 156–164.10.1016/j.jphotochem.2005.03.019
  • Choi, J., Park, H., & Hoffmann, M. R. (2009). Effects of single metal-ion doping on the visible-light photoreactivity of TiO2. The Journal of Physical Chemistry C, 114, 783–792.
  • Daoud, W. A., Leung, S. K., Tung, W. S., Xin, J. H., Cheuk, K., & Qi, K. (2008). Self-cleaning keratins. Chemistry of Materials, 20, 1242–1244.10.1021/cm702661k
  • Daoud, W. A., & Xin, J. H. (2004). Nucleation and growth of anatase crystallites on cotton fabrics at low temperatures. Journal of the American Ceramic Society, 87, 953–955.10.1111/(ISSN)1551-2916
  • Dastjerdi, R., & Montazer, M. (2010). A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties. Colloids and Surfaces B: Biointerfaces, 79, 5–18.10.1016/j.colsurfb.2010.03.029
  • Fujishima, A., Rao, T. N., & Tryk, D. A. (2000). Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1(1), 1–21.10.1016/S1389-5567(00)00002-2
  • Fujishima, A., & Zhang, X. (2004). Titanium dioxide photocatalysis: Present situation and future approaches. Comptes Rendus Chimie, 9, 750–760.
  • Gashti, M. P., Alimohammadi, F., & Shamei, A. (2012). Preparation of water-repellent cellulose fibers using a polycarboxylic acid/hydrophobic silica nanocomposite coating. Surface & Coatings Technology, 206, 3208–3215.
  • Kathirvelu, S., D’Souza, L., & Dhurai, B. (2010). Study of stain-eliminating textiles using ZnO nanoparticles. The Journal of The Textile Institute, 101, 520–526.10.1080/00405000802563693
  • Li, H., Bian, Z., Zhu, J., Huo, Y., Li, H., & Lu, Y. (2007). Mesoporous Au/TiO2 nanocomposites with enhanced photocatalytic activity. Journal of the American Chemical Society, 129, 4538–4539.10.1021/ja069113u
  • Li, X. Z., & Li, F. B. (2001). Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment. Environmental Science and Technology, 35, 2381–2387.10.1021/es001752w
  • Linsebigler, A. L., Lu, G., & Yates, J. T., Jr. (1995). Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chemical Reviews, 95, 735–758.10.1021/cr00035a013
  • Meilert, K. T., Laub, D., & Kiwi, J. (2005). Photocatalytic self-cleaning of modified cotton textiles by TiO2 clusters attached by chemical spacers. Journal of Molecular Catalysis A: Chemical, 237, 101–108.10.1016/j.molcata.2005.03.040
  • Montazer, M., Behzadnia, A., Pakdel, E., Rahimi, M. K., & Moghadam, M. B. (2011). Photo induced silver on nano titanium dioxide as an enhanced antimicrobial agent for wool. Journal of Photochemistry and Photobiology B: Biology, 103, 207–214.10.1016/j.jphotobiol.2011.03.009
  • Montazer, M., & Morshedi, S. (2012). Nano photo scouring and nano photo bleaching of raw cellulosic fabric using nano TiO2. International Journal of Biological Macromolecules, 50, 1018–1025.10.1016/j.ijbiomac.2012.02.018
  • Montazer, M., & Morshedi, S. (2014). Photo bleaching of wool using nano TiO2 under daylight irradiation. Journal of Industrial and Engineering Chemistry, 20, 83–90.10.1016/j.jiec.2013.04.023
  • Montazer, M., & Pakdel, E. (2010). Reducing photoyellowing of wool using nano TiO2. Photochemistry and Photobiology, 86, 255–260.10.1111/php.2010.86.issue-2
  • Montazer, M., & Pakdel, E. (2011a). Functionality of nano titanium dioxide on textiles with future aspects: Focus on wool. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 12, 293–303.10.1016/j.jphotochemrev.2011.08.005
  • Montazer, M., & Pakdel, E. (2011b). Self-cleaning and color reduction in wool fabric by nano titanium dioxide. The Journal of The Textile Institute, 102, 343–352.10.1080/00405001003771242
  • Montazer, M., Pakdel, E., & Moghadam, M. (2010). Nano titanium dioxide on wool keratin as UV absorber stabilized by butane tetra carboxylic acid (BTCA): A statistical prospect. Fibers and Polymers, 11, 967–975.10.1007/s12221-010-0967-y
  • Pakdel, E., & Daoud, W. (2013). Self-cleaning cotton functionalized with TiO2/SiO2: Focus on the role of silica. Journal of Colloid and Interface Science, 401, 1–7.10.1016/j.jcis.2013.03.016
  • Pakdel, E., Daoud, W. A., & Wang, X. (2013). Self-cleaning and superhydrophilic wool by TiO2/SiO2 nanocomposite. Applied Surface Science, 275, 397–402.10.1016/j.apsusc.2012.10.141
  • Pakdel, E., Daoud, W. A., & Wang, X. (2014). Assimilating the photo-induced functions of TiO2-based compounds in textiles: Emphasis on the sol–gel process. Textile Research Journal. doi:10.1177/0040517514551462
  • Parvinzadeh Gashti, M., & Almasian, A. (2013). Citric acid/ZrO2 nanocomposite inducing thermal barrier and self-cleaning properties on protein fibers. Composites Part B: Engineering, 52, 340–349.10.1016/j.compositesb.2013.04.037
  • Qi, K., Chen, X., Liu, Y., Xin, J. H., Mak, C. L., & Daoud, W. A. (2007). Facile preparation of anatase/SiO2 spherical nanocomposites and their application in self-cleaning textiles. Journal of Materials Chemistry, 17, 3504–3508.
  • Qi, K., Daoud, W. A., Xin, J. H., Mak, C. L., Tang, W., & Cheung, W. P. (2006). Self-cleaning cotton. Journal of Materials Chemistry, 16, 4567–4574.10.1039/b610861j
  • Qi, K., Fei, B., & Xin, J. H. (2011). Visible light-active iron-doped anatase nanocrystallites and their self-cleaning property. Thin Solid Films, 519, 2438–2444.10.1016/j.tsf.2010.11.046
  • Sánchez, E., López, T., Gómez, R., Bokhimi, Morales, A., & Novaro, O. (1996). Synthesis and characterization of sol–gel Pt/TiO2 catalyst. Journal of Solid State Chemistry, 122, 309–314.10.1006/jssc.1996.0118
  • Simonsen, M. E., Jensen, H., Li, Z., & Søgaard, E. G. (2008). Surface properties and photocatalytic activity of nanocrystalline titania films. Journal of Photochemistry and Photobiology A: Chemistry, 200, 192–200.10.1016/j.jphotochem.2008.07.013
  • Sreethawong, T., Suzuki, Y., & Yoshikawa, S. (2006). Platinum-loaded mesoporous titania by single-step sol–gel process with surfactant template: Photocatalytic activity for hydrogen evolution. Comptes Rendus Chimie, 9, 307–314.10.1016/j.crci.2005.05.015
  • Subramanian, V., Wolf, E. E., & Kamat, P. V. (2004). Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. Journal of the American Chemical Society, 126, 4943–4950.10.1021/ja0315199
  • Sung-Suh, H. M., Choi, J. R., Hah, H. J., Koo, S. M., & Bae, Y. C. (2004). Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 163, 37–44.10.1016/S1010-6030(03)00428-3
  • Tung, W. S., & Daoud, W. A. (2009). New approach toward nanosized ferrous ferric oxide and Fe3O4-doped titanium dioxide photocatalysts. ACS Applied Materials & Interfaces, 1, 2453–2461.
  • Tung, W. S., Daoud, W. A., & Leung, S. K. (2009). Understanding photocatalytic behavior on biomaterials: Insights from TiO2 concentration. Journal of Colloid and Interface Science, 339, 424–433.10.1016/j.jcis.2009.07.043
  • Uddin, M. J., Cesano, F., Bonino, F., Bordiga, S., Spoto, G., Scarano, D., & Zecchina, A. (2007). Photoactive TiO2 films on cellulose fibres: Synthesis and characterization. Journal of Photochemistry and Photobiology A: Chemistry, 189, 286–294.10.1016/j.jphotochem.2007.02.015
  • Uddin, M. J., Cesano, F., Scarano, D., Bonino, F., Agostini, G., & Spoto, G., … Zecchina, A. (2008). Cotton textile fibres coated by Au/TiO2 films: Synthesis, characterization and self cleaning properties. Journal of Photochemistry and Photobiology A: Chemistry, 199, 64–72.10.1016/j.jphotochem.2008.05.004
  • Veronovski, N., Sfiligoj-Smole, M., & Viota, J. L. (2010). Characterization of TiO2/TiO2–SiO2 coated cellulose textiles. Textile Research Journal, 80, 55–62.10.1177/0040517509104012
  • Wang, X., Dornom, T., Blackford, M., & Caruso, R. A. (2012). Solvothermal synthesis and photocatalytic application of porous Au/TiO2 nanocomposites. Journal of Materials Chemistry, 22, 11701–11710.10.1039/c2jm31759a
  • Wang, R., Wang, X., & Xin, J. H. (2010). Advanced visible-light-driven self-cleaning cotton by Au/TiO2/SiO2 photocatalysts. ACS Applied Materials and Interfaces, 2, 82–85.10.1021/am900588s
  • Wu, H.-S., Sun, L.-D., Zhou, H.-P., & Yan, C.-H. (2012). Novel TiO2–Pt@SiO2 nanocomposites with high photocatalytic activity. Nanoscale, 4, 3242–3247.10.1039/c2nr30523b
  • Yuen, C. W. M., Ku, S. K. A., Li, Y., Cheng, Y. F., Kan, C. W., & Choi, P. S. R. (2009). Improvement of wrinkle-resistant treatment by nanotechnology. The Journal of The Textile Institute, 100, 173–180.10.1080/00405000701661028
  • Yuranova, T., Laub, D., & Kiwi, J. (2007). Synthesis, activity and characterization of textiles showing self-cleaning activity under daylight irradiation. Catalysis Today, 122, 109–117.10.1016/j.cattod.2007.01.040
  • Yuranova, T., Mosteo, R., Bandara, J., Laub, D., & Kiwi, J. (2006). Self-cleaning cotton textiles surfaces modified by photoactive SiO2/TiO2 coating. Journal of Molecular Catalysis A: Chemical, 244, 160–167.10.1016/j.molcata.2005.08.059
  • Yuranova, T., Rincon, A. G., Pulgarin, C., Laub, D., Xantopoulos, N., Mathieu, H. J., & Kiwi, J. (2006). Performance and characterization of Ag–cotton and Ag/TiO2 loaded textiles during the abatement of E. coli. Journal of Photochemistry and Photobiology A: Chemistry, 181, 363–369.10.1016/j.jphotochem.2005.12.020
  • Zaleska, A. (2008). Doped-TiO2: A review. Recent Patents on Engineering, 2, 157–164.10.2174/187221208786306289
  • Zhang, M., Shi, L., Yuan, S., Zhao, Y., & Fang, J. (2009). Synthesis and photocatalytic properties of highly stable and neutral TiO2/SiO2 hydrosol. Journal of Colloid and Interface Science, 330, 113–118.10.1016/j.jcis.2008.10.038
  • Zhang, H., & Zhu, H. (2012). Modification of wool fabric treated with tetrabutyl titanate by hydrothermal method. The Journal of The Textile Institute, 103, 1108–1115.10.1080/00405000.2012.660759
  • Zheng, Z., Huang, B., Qin, X., Zhang, X., Dai, Y., & Whangbo, M.-H. (2011). Facile in situ synthesis of visible-light plasmonic photocatalysts M@TiO2 (M = Au, Pt, Ag) and evaluation of their photocatalytic oxidation of benzene to phenol. Journal of Materials Chemistry, 21, 9079–9908.10.1039/c1jm10983a

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.