1,751
Views
35
CrossRef citations to date
0
Altmetric
Review

Classification, characterization, and the production processes of biopolymers used in the textiles industry

Pages 674-682 | Received 03 Sep 2015, Accepted 15 Apr 2016, Published online: 05 May 2016

References

  • Aguilar, R. M., Elvira, C., Gallardo, A., Vázquez, B., & Román, J. S. (2007). Smart polymers and their applications as biomaterials. Topics in Tissue Engineering, 3, 1–27.
  • Altinkaya, S. A. Yenal, H. & Ozbas, B. (2005). Membrane formation by drycast process: Model validation through morphological studies. Journal of Membrane Science, 249, 63–72.
  • Anand, S. C., Kennedy, J. F., Miraftab, M., & Rajendran, S. (2010). Medical and healthcare textiles. Cambridge: Woodhead Publishing.10.1533/9780857090348
  • Antipov, E. M., Dubinsky, V. A., Rebrov, A. V., Nekrasov, Y. P., Gordeev, S. A., & Ungar, G. (2006). Strain-induced mesophase and hard-elastic behaviour of biodegradable polyhydroxyalkanoates fibers. Polymer, 47, 5678–5690.10.1016/j.polymer.2005.04.111
  • Artamonova, S. V., & Demina, N. M. (1997). New starch-based textile oiling agent for glass fibres. Fibre Chemistry, 29, 68–70.10.1007/BF02430692
  • Aslan, B., Ramaswamy, S., Raina, M., & Gries, T. (1992). Bio-composites: Processing of thermoplastic biopolymers and industrial natural fibres from staple fibre blends up to fabric for composite applications. Journal of Textiles and Engineer, 19, 47–51.
  • ASTM D5338- 15. (1998). Test method for determining aerobic biodegradation of plastic material under controlled compositing conditions, ASTM International.
  • Avérous, L. (2004). Biodegradable multiphase systems based on plasticized starch: A review. Journal of Macromolecular Science, Part C: Polymer Reviews, 44, 231–274.10.1081/MC-200029326
  • Avérous, L., Fringant, C., & Moro, L. (2001). Plasticized starch cellulose interactions in polysaccharide composites. Polymer, 42, 6565–6572.10.1016/S0032-3861(01)00125-2
  • Bastioli, C. (2005). Handbook of biodegradable polymers. Shawbury: Rabra Technology.
  • Bendig, C., Kraxenberger, T., & Römer, L. (2014). Shaping the future with industrial biotechnology – New and efficient production processes for biopolymers. JSM Biotechnology Medicine Bioengineering, 2, 1025–1034.
  • Bhat, G., Kamath, M. G., Mueller, D., Parikh, D. V., & McLean, M. (2004). Cotton-based composites for automotive applications. Global Plastics Environmental Conference, Michigan.
  • Biresaw, G., & Carriere, C. J. (2004). Compatibility and mechanical properties of blends of polystyrene with biodegradable polyesters. Composites Part A: Applied Science and Manufacturing, 35, 313–320.10.1016/j.compositesa.2003.09.020
  • Blackburn, R. S. (2005). Biodegradable and sustainable fibres. Cambridge: Woodhead Publishing.
  • Bond, E. B., Autran, J.-P. M., Mackey, L. N., Noda, I., & D’donnell, H. O. (2005). United state patent, US 6.890.872, B2, Fibre comprising starch and biodegradable polymers.
  • Bryan, B. E., Marie, A. J. P., Neil, M. L., Isao, N., & Odonnell, H. J. (2002). PCT/US02/14627.
  • Callister, W. (1999). Materials science and engineering: An introduction. New York, NY: Wiley.
  • Capasso, V. (2003). Mathematical modelling for polymer processing. New York, NY: Springer-Verlag, Berlin Heidelberg.10.1007/978-3-642-55771-2
  • De Carvalho, A. J. F., Curvelo, A. A. S., & Agnelli, J. A. M. (2002). Wood pulp reinforced thermoplastic starch composites. International Journal of Polymeric Materials, 51, 647–660.10.1080/714975803
  • Chandra, R., & Rustgi, R. (1998). Biodegradable biopolymers, Progress in Polymer Science, 23, 1273–1335.
  • Chen, X. (2010). Modelling and predicting textile behaviour. Woodhead Publishing Ltd.10.1533/9781845697211
  • Chen, Y., Wombacher, R., Wendorff, J. H., Visjager, J., Smith, P., & Greiner, A. (2003). Design, synthesis, and properties of new biodegradable aromatic/aliphatic liquid crystalline copolyesters. Biomacromolecules, 4, 974–980.10.1021/bm0340164
  • Crank, M., Patel, M., Marscheider-Weidemann, F., Schleich, J., Hüsing, B., & Angerer, G. (2004). Techno-economic feasibility of large-scale production of bio-based polymers in Europe (PRO-BIP) – Final report. Spain: Utrecht University & Fraunhofer ISI.
  • Crank, M., Patel, M., Marscheider-Weidemann, F., Schleich, J., Hüsing, B., Angerer, G., & Wolf, O. (2005). Techno-economic feasibility of large-scale production of bio-based polymers in Europe: Technical report EUR 22103 EN. European Science and Technology Observatory, European Communities.
  • Czuryszkiewicz, T., Ahvenlammi, J., Kortesuo, P., Ahola, M., Kleitz, F., Jokinen, M., ... Rosenholm, J. B. (2002). Drug release from biodegradable silica fibers. Journal of Non-Crystalline Solids, 306, 1–10.10.1016/S0022-3093(02)01060-8
  • Dash, T. K., & Konkimalla, V. B. (2012). Poly-є-caprolactone based formulations for drug delivery and tissue engineering: A review. Journal of Controlled Release, 158, 15–33.10.1016/j.jconrel.2011.09.064
  • Deng, L.-M., Wang, Y.-Z., Yang, K.-K., Wang, X.-L., Zhou, Q., & Ding, S.-D. (2004). A new biodegradable copolyester poly(butylene succinate-co-ethylene succinate-co-ethylene terephthalate). Acta Materialia, 52, 5871–5878.10.1016/j.actamat.2004.09.002
  • Eastman polymers for fibres. (2002). Tennessee: Eastman chemical company.
  • Erceg, M., Kovačić, T., & Klarić, I. (2005). Dynamic thermogravimetric degradation of poly(3-hydroxybutyrate)/aliphatic–aromatic copolyester blends. Polymer Degradation and Stability, 90, 86–94.10.1016/j.polymdegradstab.2005.02.014
  • Fambri, L., Pegoretti, A., Fenner, R., Incardona, S. D., & Migliaresi, C. (1997). Biodegradable fibres of poly(l-lactic acid) produced by melt spinning. Polymer, 38, 79–85.10.1016/S0032-3861(96)00486-7
  • Fang, Q., & Hanna, M. A. (2001). Preparation and characterization of biodegradable copolyester-starch based foams. Bioresource Technology, 78, 115–122.10.1016/S0960-8524(01)00013-X
  • Fletcher, K. (2013). Sustainable fashion and textiles: Design journeys. London: Routledge.
  • Fumin, L., Haile, W. A., Tincher, M. E., & Harris, W. S. (2003). Bio-degradable copolyester nonwoven fabric. European Patent EP1330350.
  • Ganesh, K., Alp, A. H., & Russell, G. R. (2011, March 24). United States Patent.
  • Guduri, B., Semosa, H., & Mengb, Y. Z. (2009, July 27–31). Green composites from woven flax fiber and bio-copolyester. Edinburgh: International Conference on Composite Materials (17).
  • Han, L., Zhu, G., Zhang, W., & Chen, W. (2009). Composition, thermal properties, and biodegradability of a new biodegradable aliphatic/aromatic copolyester. Journal of Applied Polymer Science, 113, 1298–1306.10.1002/app.v113:2
  • Hanmugasundaram, W. L. (2012). Development and characterization of cotton and organic cotton gauze fabric coated with biopolymers and antibiotic drugs for wound healing. Indian Journal of Fibre Textile Research, 37, 146–150.
  • Harzallah, O., & Drean, J.-Y. (2010). Macro and micro characterization of Biopolymers: case of cotton fibre. In M. Elnashar (Ed.), Biopolymers (pp. 193–218). Rijeca: Sciyo.
  • Hayes, R. A. (2002). Aliphatic-aromatic copolyesters. US Patent 6485819.
  • Hearle, J. W. S. (1985). The new revolution in textile technology phys techno, 16, 269–281.
  • Herrera-Franco, P. J., & Valadez-González, A. (2004). Mechanical properties of continuous natural fibre-reinforced polymer composites. Composites Part A: Applied Science and Manufacturing, 35, 339–345.10.1016/j.compositesa.2003.09.012
  • Herrmann, A. S., Nickel, J., & Riedel, U. (1998). Construction materials based upon biologically renewable resources from components to finished parts. Polymer Degradation and Stability, 59, 251–261.10.1016/S0141-3910(97)00169-9
  • Hoekstra, A., Struszczyk, H., & Kivekäs, O. (1998). Percutaneous microcrystalline chitosan application for sealing arterial puncture sites. Biomaterials, 19, 1467–1471.10.1016/S0142-9612(98)00060-X
  • Holding, W. (2004). Biodegradable polymer Supply chains: Implications and opportunities for Australian agriculture. Kingston: Australia Rural Industries Research and Development Corporation.
  • Hoppens, N. C., Hudnall, T. W., Foster, A., & Booth, C. J. (2004). Aliphatic-aromatic copolyesters derived from 2,2,4,4-tetramethyl-1,3-cyclobutanediol. Journal of Polymer Science, Part A: Polymer Chemistry, 42, 3473–3478.10.1002/(ISSN)1099-0518
  • Hult, E. L., Iotti, M., & Lenes, M. (2010). Efficient approach to high barrier packaging using microfibrillar cellulose and shellac. Cellulose, 17, 575–586.10.1007/s10570-010-9408-8
  • Jena, U. C. H., & Elsner, P. (2006). Biofunctional textiles and the skin. Basel: S. Karger.
  • Jin, H.-J., Lee, B.-Y., Kim, M.-N., & Yoon, J.-S. (2000). Thermal and mechanical properties of mandelic acid-copolymerized poly(butylene succinate) and poly(ethylene adipate). Journal of Polymer Science Part B: Polymer Physics, 38, 1504–1511.10.1002/(ISSN)1099-0488
  • Jocić, D., Tourrette, A., & Lavrič, P. K. (2010). Biopolymers: Biopolymer-based stimuli-responsive polymeric systems for functional finishing of textiles. Croatia: Sciyo.
  • Kalambur, S., & Rizvi, S. S. H. (2005). Biodegradable and functionally superior starch-polyester nanocomposites from reactive extrusion. Journal of Applied Polymer Science, 96, 1072–1082.10.1002/(ISSN)1097-4628
  • Kaushik, A., Arya, S. K., Vasudev, A., & Bhansali, S. (2013). Recent advances in detection of ochratoxin-A. Open Journal of Applied Biosensor, 02, 1–11.10.4236/ojab.2013.21001
  • Ki, H. C., & Ok Park, O. O. (2001). Synthesis, characterization and biodegradability of the biodegradable aliphatic–aromatic random copolyesters. Polymer, 42, 1849–1861.10.1016/S0032-3861(00)00466-3
  • Kleeberg, I., Hetz, C., Kroppenstedt, R. M., Müller, R.-J., & Deckwer, W.-D. (1998). Biodegradation of aliphatic-aromatic copolyesters by thermomonospora fusca and other thermophilic compost isolates. Applied Environmental Microbiology, 64, 1731–1735.
  • Knittel, D., Buschmann, H. J., Hipler, C., & Elsner, P. (2004). Schollmeyer E:Functional Textiles for Skin Care and as Therapeutic Medium. Akt Dermatologie, 30, 11–17.
  • Kopeček, J., & Yang, J. (2007). Hydrogels as smart biomaterials. Polymer International, 56, 1078–1098.10.1002/(ISSN)1097-0126
  • Kulkarni, A., Tourrette, A., Warmoeskerken, M. M. C. G., & Jocic, D. (2010). Microgel-based surface modifying system for stimuli-responsive functional finishing of cotton. Carbohydrate Polymers, 82, 1306–1314.10.1016/j.carbpol.2010.07.011
  • Kumar, A., Srivastava, A., Galaev, I. Y., & Mattiasson, B. (2007). Smart polymers: Physical forms and bioengineering applications. Progress in Polymer Science, 32, 1205–1237.10.1016/j.progpolymsci.2007.05.003
  • Kwon, K., Kidoaki, S., & Matsuda, T. (2005). Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: Structural characteristics, mechanical properties and cell adhesion potential. Biomaterials, 26, 3929–3939.10.1016/j.biomaterials.2004.10.007
  • Plackett, D. P., Løgstrup Andersen, T. L., Batsberg Pedersen, W. B., & Nielsen, L. (2003). Biodegradable composites based on l-polylactide and jute fibres. Composites Science and Technology, 63, 1287–1296.10.1016/S0266-3538(03)00100-3
  • Li, F., Xu, X., Li, Q., Li, Y., Zhang, H., Yu, J., & A, Cao. (2006). Thermal degradation and their kinetics of biodegradable poly(butylene succinate-co-butylene terephthate)s under nitrogen and air atmospheres. Polymer Degradation and Stability, 91, 1685–1693.10.1016/j.polymdegradstab.2005.12.005
  • Lim, S., Lee, J., Jang, S., Lee, S., Lee, K., Choi, H., & Chin, G. (2011). Synthetic aliphatic biodegradable poly(butylene succinate)/clay nanocomposite foams with high blowing ratio and their physical characteristics. Polymer Engineering and Science, 51, 1316–1324.10.1002/pen.v51.7
  • Lim, K. Y., Yoon, K. J., & Kim, B. C. (2003). Highly absorbable lyocell fiber spun from celluloses/hydrolyzed starch-g-PAN solution in NMMO monohydrate. European Polymer Journal, 39, 2115–2120.10.1016/S0014-3057(03)00158-7
  • Lötzsch, D., Ruhmann, R., & Seeboth, A. (2013). Thermochromic biopolymer based on natural anthocyanidin dyes. Open Journal of Polymer Chemistry, 3, 43–47.10.4236/ojpchem.2013.33009
  • Lu, F., Ahaile, W., Etincher, M., & Wiley, S. H. (2002). The world intellectual property organization, WIPO. Switzerland.
  • Lundin, M. (2009). Adsorption of biopolymers and their layer-by-layer assemblies on hydrophilic surfaces ( Unpublished Doctoral Thesis). KTH Royal Institute of Technology, Stockholm, Sweden.
  • Luo, S., & Netravali, A. N. (1999). Interfacial and mechanical properties of environment-friendly green composites made from pineapple fibers and poly(hydroxybutyrate-co-valerate) resin. Journal of Materials Science, 34, 3709–3719.10.1023/A:1004659507231
  • Madrigal-Carballo, S., Lim, S., Rodriguez, G., Vila, A. O., Krueger, C. G., Gunasekaran, S., & Reedb, J. D. (2010). Biopolymer coating of soybean lecithin liposomes via layer-by-layer self-assembly as novel delivery system for ellagic acid. Journal of Functional Foods, 2, 99–106.10.1016/j.jff.2010.01.002
  • Massardier-Nageotte, V., Pestre, C., Cruard-Pradet, T., & Bayard, R. (2006). Aerobic and anaerobic biodegradability of polymer films and physico-chemical characterization. Polymer Degradation and Stability, 91, 620–627.10.1016/j.polymdegradstab.2005.02.029
  • McCarthy, B. J. (2011). Textiles for hygiene and infection control. Cambridge: Woodhead Publishing Limited.10.1533/9780857093707
  • Mohanlal, A. P. (2003). Design and study of biodegradable small diameter woven vascular grafts ( Unpublished Master Thesis). North Carolina State University, USA.
  • Mohanty, A. K., Khan, M. A., & Hinrichsen, G. (2000). Influence of chemical surface modification on the properties of biodegradable jute fabrics – Polyester amide composites. Composites Part A: Applied Science and Manufacturing, 31, 143–150.10.1016/S1359-835X(99)00057-3
  • NIIR-board. (2006). The complete book on biodegradable plastics and polymers (Recent developments, properties, analysis, materials & processes). Delhi: Asia Pacific Business Press Inc.
  • Nishino, T., Hirao, K., Kotera, M., Nakamae, K., & Inagaki, H. (2003). Kenaf reinforced biodegradable composite. Composites Science and Technology, 63, 1281–1286.10.1016/S0266-3538(03)00099-X
  • Nolan-ITU. (2002). Environment Australia: biodegradable plastics- development and environmental impacts. East Kew: Nolan-ITU.
  • Ochi, S. (2006). Development of high strength biodegradable composites using Manila hemp fiber and starch-based biodegradable resin. Composites Part A: Applied Science and Manufacturing, 37, 1879–1883.10.1016/j.compositesa.2005.12.019
  • Oksman, K., Skrifvars, M., & Selin, J.-F. (2003). Natural fibres as reinforcement in polylactic acid (PLA) composites. Composites Science and Technology, 63, 1317–1324.10.1016/S0266-3538(03)00103-9
  • Okubo, K., & Fujii, T. (2002). Eco-composites using bamboo and other natural fibers and their mechanical properties. In Proceedings of the international workshop on “Green” composites, 17–21.
  • Pan, P., & Inoue, Y. (2009). Polymorphism and isomorphism in biodegradable polyesters. Progress in Polymer Science, 34,  605–640.10.1016/j.progpolymsci.2009.01.003
  • Patent, J. P. (2003). Biodegradable pleated Filter material and filter unit for air purification and liquid filtration. Taira: Omori.
  • Pavlov, M. P., Mano, J. F., Neves, N. M., & Reis, R. L. (2004). Fibers and 3D mesh scaffolds from biodegradable starch-based blends: Production and characterization. Macromolecular Bioscience, 4, 776–784.10.1002/(ISSN)1616-5195
  • Prowans, P., El Fray, M. E., & Slonecki, J. (2002). Biocompatibility studies of new multiblock poly(ester-ester)s composed of poly(butylene terephthalate) and dimerized fatty acid. Biomaterials, 23, 2973–2978.10.1016/S0142-9612(02)00026-1
  • Purna, S. K., & Babu, M. (2000). Collagen based dressings – A review. Burn, 26, 54–62.
  • Râpă, M., Popa, M. E., Cinelli, P., Lazzeri, A., Burnichi, R., Mitelut, A., & Grosu, E. (2011). Biodegradable alternative to plastics for agriculture application. ACRomanian Biotechnological Letters, 16, 59–64.
  • Renke-Gluszko, M., & El Fray, M. E. (2004). The effect of simulated body fluid on the mechanical properties of multiblock poly(aliphatic/aromatic-ester) copolymers. Biomaterials, 25, 5191–5198.10.1016/j.biomaterials.2003.12.021
  • Rhim, J. W., & Ng, P. K. (2007). Natural biopolymer-based nanocomposite films for packaging applications. Critical Reviews in Food Science and Nutrition, 47, 411–433.10.1080/10408390600846366
  • Rolf-Joachim, M., Ilona, K., & Wolf-Dieter, D. (2001). Biodegradation of polyesters containing aromatic constituents. Journal of Biotechnology, 86, 87–95.
  • Rong, H., & Bhat, G. S. (2003). Preparation and properties of cotton-eastar nonwovens. International Nonwovens Journal, 12, 53–57.
  • Rong, H., Leon, R. V., & Bhat, G. S. (2005). Statistical analysis of the effect of processing conditions on the strength of thermal point-bonded cotton-based nonwovens. Textile Research Journal, 75, 35–38.10.1177/004051750507500107
  • Sami, J. (1999). Processing of the 4th Conference on Biogically Degradable Materials. Presentation No.D. 95, Germany.
  • Santos, M. I., Fuchs, S., Gomes, M. E., & Unger, R. E. (2007). Response of micro- and macrovascular endothelial cells to starch-based fiber meshes for bone tissue engineering. Biomaterials, 28, 240–248.10.1016/j.biomaterials.2006.08.006
  • Sawada, H. (1998). ISO standard activities in standardization of biodegradability of plastics-development of test methods and definitions. Polymer Degradation and Stability, 59, 365–370.10.1016/S0141-3910(97)00191-2
  • Schmack, G., Jehnichen, D., Vogel, R., Tändler, B., Beyreuther, R., Jacobsen, S., et al. (2001). Biodegradable fibres spun from poly(lactide) generated by reactive extrusion. Journal of Biotechnology, 86, 151–160.10.1016/S0168-1656(00)00410-7
  • Scott, A. (2014). Spider silk poised for commercial entry. Chemical & Engineering, 92, 24–27.
  • Sekhon, B. S. (2010). Food nanotechnology – An overview. Nanotechnology, Science and Applications, 3, 1–15.
  • Shi, X. Q., Aimi, K., Ito, H., Ando, S., & Kikutani, T. (2005). Characterization on mixed-crystal structure of poly(butylene terephthalate/succinate/adipate) biodegradable copolymer fibers. Polymer, 46, 751–760.10.1016/j.polymer.2004.11.080
  • Shi, G., Rouabhia, M., Wang, Z., Dao, L. H., & Zhang, Z. (2004). A novel electrically conductive and biodegradable composite made of polypyrrole nanoparticles and polylactide. Biomaterials, 25, 2477–2488.10.1016/j.biomaterials.2003.09.032
  • Singha, K., Namgung, R., & Kim, W. J. (2011). Polymers in small-interfering RNA delivery. Nucleic Acid Therapeutics (Formerly Oligonucleotides), 21, 133–147.10.1089/nat.2011.0293
  • Smith, R. (2005). Biodegradable polymers for industrial applications. Cambridge: Woodhead Publishing Limited.
  • Standard guide for assessing the compostability of environmentally degradable plastics, D 6002–96 (1996). American society for testing and materials. Washington D.C.
  • Steinbüchel, A. (2003). Biopolymers Vol. 10: General aspects and special applications (Vol. 10). Weinheim: Wiley-VCH.
  • Strnad, S., Šauperl, O., & Fras-Zemljič, L. (2010). Cellulose fibres functionalised by chitosan: Characterization and application. In M. Elnashar (Ed.), Biopolymers (pp. 181–200). Rijeca: Sciyo.
  • Takiyama, E., & Fujimaki, T. (1994). Biodegradable plastics and polymers. Amsterdam: Elsevier.
  • Thakore, S. I. (2012). Role of biopolymers in green nanotechnology. In J. Verbeek (Ed.), Products and applications of biopolymers (pp. 119–140). Rijeka: Tech.
  • Tobler-Rohr, M. I. (2011). Handbook of sustainable textile production. Cambridge: Woodhead Publishing Limited.10.1533/9780857092861
  • Tokiwa, Y., Suzuki, T., & Appl, J. (1981). Hydrolysis of copolyesters containing aromatic and aliphatic ester blocks by lipase. Journal of Applied Polymer Science, 26, 441–448.10.1002/app.1981.070260206
  • Tourrette, A., De Geyter, N. D., Jocic, D., Morent, R., Warmoeskerken, M. M. C. G., & Leys, C. (2009). Incorporation of poly(N-isopropylacrylamide)/chitosan microgel onto plasma functionalized cotton fibre surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 352, 126–135.10.1016/j.colsurfa.2009.10.014
  • Twarowska-Schmidt, K. (2004). Evaluation of the suitability of some biodegradable polymers for the forming of fibres. Fibres & Textiles in Eastern Europe, 12, 15–18.
  • Twarowska-Schmidt, K., & Ratajska, M. (2005). Biodegradability of non-wovens made of aliphatic-aromatic polyester. Fibres & Textiles in Eastern Europe, 13, 71–74.
  • Uretzkey, G., Appelbaum, A. J., & Younes, H. (1990). Long-term evaluation of a new selectively biodegradable vascular graft coated with polyethylene oxide-polylactic acid for right ventricle conduit. The Journal of Thoracic and Cardiovascular Surgey, 100, 769–780.
  • Wang, J. H., & Aimin, H. (2008). Wipo Patent WO/2008/008068.
  • Wang, H.-R., & Chen, K.-M. (2006). Preparation and surface active properties of biodegradable dextrin derivative surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 281, 190–193.10.1016/j.colsurfa.2006.02.039
  • Wang, Q., Zhang, N., Hu, X., Yang, J., & Du, Y. (2007). Chitosan/starch fibers and their properties for drug controlled release. European Journal of Pharmaceutics and Biopharmaceutics, 66, 398–404.
  • Wang, Q., Zhang, N., Hu, X., Yang, J., & Du, Y. (2007). Chitosan/starch fibers and their properties for drug controlled release. European Journal of Pharmaceutics and Biopharmaceutics66, 398–404.
  • Wang, X., Ding, B., & Li, B. (2013). Biomimetic electrospun nanofibrous structures for tissue engineering. Materials Today, 16, 229–241.10.1016/j.mattod.2013.06.005
  • Witt, U., Müller, R.-J., & Deckwer, W.-D. (1996). Studies on sequence distribution of aliphatic/aromatic copolyesters by high-resolution 13C nuclear magnetic resonance spectroscopy for evaluation of biodegradability. Macromolecular Chemistry and Physics, 197, 1525–1535.10.1002/macp.1996.021970428
  • Wollerdorfer, M., & Bader, H. (1998). Influence of natural fibres on the mechanical properties of biodegradable polymers. Industrial Crops and Products, 8, 105–112.10.1016/S0926-6690(97)10015-2
  • Won, C. S. (2006). Vascular tissue engineering scaffolds from elastomeric biodegradable poly(L-lactide-co-ε-caprolactone) (PLCL) via melt spinning and electrospinning. North Carolina: North Carolina State University.
  • Wu, C.-S. (2011). Process, characterization and biodegradability of aliphatic aromatic polyester/sisal fiber composites. Journal of Polymers and the Environment, 19, 706–713.10.1007/s10924-011-0318-0
  • Wu, C.-S. (2012). Characterization of cellulose acetate-reinforced aliphatic–aromatic copolyester composites. Carbohydrate Polymers, 87, 1249–1256.10.1016/j.carbpol.2011.09.009
  • Yoshimoto, H., Shin, Y. M., Terai, H., & Vacanti, J. P. (2003). A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials, 24, 2077–2082.10.1016/S0142-9612(02)00635-X
  • Younes, B. (2014). A statistical investigation of the influence of the multi-stage hot-drawing process on the mechanical properties of biodegradable linear aliphatic-aromatic co-polyester fibers. Advances in Materials Science and Applications, 3, 186–202.10.5963/AMSA0304003
  • Younes, B. (2015). Simple rheological analysis method of spinnable-polymer flow properties using MFI tester. Indian Journal of Materials Science, 2015 ( Article ID 790107), 1–8.
  • Younes, B., & Fotheringham, A. (2012). Factorial optimisation of the effects of extrusion temperature profile and polymer grade on as-spun aliphatic–aromatic co-polyester fibres III: Mechanical properties. The Journal of The Textile Institute, 103, 139–153.10.1080/00405000.2011.554671
  • Younes, B., Fotheringham, A., Dessouky, H. M. E., & Haddad, G. (2013). The influence of multi-stage hot-drawing on the overall orientation of biodegradable aliphatic-aromatic co-polyester fibers. Journal of Engineered Fibers and Fabrics, 8, 6–16.
  • Zecheru, T. (2010). Biopolymers for military use: Opportunities and environment implications – A review. In M. Elnashar (Ed.), Biopolymers (pp. 597–612). Rijeca: Sciyo.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.