442
Views
6
CrossRef citations to date
0
Altmetric
Articles

Airlaid nonwoven panels for use as structural thermal insulation

, &
Pages 17-23 | Received 24 Feb 2016, Accepted 13 Apr 2017, Published online: 01 May 2017

References

  • Alimuzzaman, S., Gong, R. H., & Akonda, M. (2013). Nonwoven polylactic acid and flax biocomposites. Polymer Composites, 34, 1611–1619.10.1002/pc.22561
  • Cerkez, I., Kocer, H. B., & Broughton, R. M. (2012). A practical cost model for selecting nonwoven insulation materials. Journal of Engineered Fibers and Fabrics, 7, 1–9.
  • Cramer, S., Friday, O., White, R., & Sriprutkiat, G. (2003). Mechanical properties of gypsum board at elevated temperatures. Proceeding of the Fire and Materials, 33–42.
  • Debnath, S., & Madhusoothanan, M. (2010). Thermal insulation, compression and air permeability of polyester needle-punched nonwoven. Indian Journal of Fibre & Textile Research, 35, 38–44.
  • Du, N., Fan, J., & Wu, H. (2008). Optimum porosity of fibrous porous materials for thermal insulation. Fibers and Polymers, 9, 27–33.10.1007/s12221-008-0005-5
  • Ellison M. S., Cox, C. L., Green, K. E. & Tascan M. (2010), Construction system and resilient non-woven structural building panels. US20100107512 A1.
  • Fu, S. Y., & Mai Y. W. (2003). Thermal conductivity of misaligned short-fiber-reinforced polymer composites. Journal of Applied Polymer Science, 88, 1497–1505.10.1002/(ISSN)1097-4628
  • Gao, J., Yu, W., & Pan, N. (2007). Structures and properties of the goose down as a material for thermal insulation. Textile Research Journal, 77, 617–626.
  • Gencel, O., del Coz Diaz, J. J., Sutcu, M., Koksal, F., Rabanel, A. F. P., Martinez-Berrara, G., & Brostow, W. (2014). Properties of gypsum composites containing vermiculite and polypropylene fibers: Numerical and experimental results. Energy and Buildings, 70, 135–144.10.1016/j.enbuild.2013.11.047
  • Gibson, P., & Lee, C. (2007). Application of nanofiber technology to nonwoven thermal insulation. Journal of Engineered Fibers and Fabrics, 2, 32–40.
  • Intini, F., & Kühtz, S. (2011). Recycling in buildings: An LCA case study of a thermal insulation panel made of polyester fiber, recycled from post-consumer PET bottles. The International Journal of Life Cycle Assessment., 16, 306–315.10.1007/s11367-011-0267-9
  • Jirsak, O., Sadikoglu, T. G., Ozipek, B., & Pan, N. (2000). Thermo-insulating properties of perpendicular-laid versus cross-laid lofty nonwoven fabrics. Textile Research Journal, 70, 121–128.10.1177/004051750007000206
  • Kim, B.-S., Kimura, N., Kim, H.-K., Watanabe, K., & Kim, I.-S. (2011). Thermal insulation, antibacterial and mold properties of breathable nanofiber-laminated wallpapers. Journal of Nanoscience and Nanotechnology, 11, 4929–4933.10.1166/jnn.2011.4125
  • Kumaran, M. K. (2006). A thermal and moisture property database for common building and insulation materials. ASHRAE Transactions, 485–497.
  • Lee, S. (1989). Effect of fiber orientation on thermal radiation in fibrous media. International Journal of Heat and Mass Transfer, 32, 311–319.10.1016/0017-9310(89)90178-6
  • Mao, N., & Russell, S. (2007). The thermal insulation properties of spacer fabrics with a mechanically integrated wool fiber surface. Textile Research Journal, 77, 914–922.10.1177/0040517507083524
  • Mohammadi, M., Banks-Lee, P., & Ghadimi, P. (2003). Determining radiative heat transfer through heterogeneous multilayer nonwoven materials. Textile Research Journal, 73, 896–900.10.1177/004051750307301008
  • Neira, D. S. M., & Marinho, G. S. (2009). Nonwoven sisal fiber as thermal insulator material. Journal of Natural Fibers, 6, 115–126.10.1080/15440470802328964
  • Paul, H. L., & Diller, K. R. (2003). Comparison of thermal insulation performance of fibrous materials for the advanced space suit. Journal of Biomechanical Engineering, 125, 639–647.10.1115/1.1611885
  • Qashou, I., Tafreshi, H. V., & Pourdeyhimi, B. (2009). An investigation of the radiative heat transfer through nonwoven fibrous materials. Journal of Engineered Fibers and Fabrics, 4, 9–15.
  • Saber, H. H., Maref, W., Elmahdy, H., Swinton, M. C., & Glazer, R. (2012). 3D heat and air transport model for predicting the thermal resistances of insulated wall assemblies. Journal of Building Performance Simulation, 5, 75–91.10.1080/19401493.2010.532568
  • Sakthivel, S., & Ramachandran, T. (2012). Thermal conductivity of non-woven materials using reclaimed fibres. International Journal of Engineering Research and Applications, 3, 2983–2987.
  • Stark, C., & Fricke, J. (1993). Improved heat-transfer models for fibrous insulations. International Journal of Heat and Mass Transfer, 36, 617–625.10.1016/0017-9310(93)80037-U
  • Tascan, M., & Vaughn, E. A. (2008). Effects of total surface area and fabric density on the acoustical behavior of needlepunched nonwoven fabrics. Textile Research Journal, 78, 289–296.10.1177/0040517507084283
  • Vallabh, R., Banks-Lee, P., & Mohammadi, M. (2008). Determination of radiative thermal conductivity in needlepunched nonwovens. Journal of Engineered Fibers and Fabrics, 3, 46–52.
  • Veiseh, S., & Hakkaki-Fard, A. (2009). Numerical modeling of combined radiation and conduction heat transfer in mineral wool insulations. Heat Transfer Engineering, 30, 477–486.10.1080/01457630802529065
  • Veiseh, S., Hakkaki-Fard, A., & Kowsary, F. (2009). Determination of the air/fiber conductivity of mineral wool insulations in building applications using nonlinear estimation methods. Journal of Building Physics, 32, 243–260.10.1177/1744259108099431
  • Veiseh, S., Khodabandeh, N., & Hakkaki-Fard, A. (2009). Mathematical models for thermal conductivity density relationship in fibrous thermal insulations for practical applications. Asian Journal of Civil Engineering, 10, 201–214.
  • Venkataraman, M., Mishra, R., Kotresh, T. M., & Sakoi T., & Milithy J. (2015). Effect of compressibility on heat transport phenomena in aerogel-treated nonwoven fabrics. The Journal of The Textile Institute,107, 1150–1158. doi:10.1080/00405000.2015.1097084
  • Wang, M., He, J., Yu, J., & Pan, N. (2007). Lattice Boltzmann modeling of the effective thermal conductivity for fibrous materials. International Journal of Thermal Sciences, 46, 848–855.10.1016/j.ijthermalsci.2006.11.006
  • Woo, S. S., Shalev, I., & Barker, R. L. (1994). Heat and moisture transfer through nonwoven fabrics part I: Heat transfer. Textile Research Journal, 64, 149–162.10.1177/004051759406400305
  • Yachmenev, V., Parikh, D., & Calamari, T. (2002). Thermal insulation properties of biodegradable, cellulosic-based nonwoven composites for automotive application. Journal of Industrial Textiles, 31, 283–296.10.1106/152808302029087

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.