58
Views
1
CrossRef citations to date
0
Altmetric
Articles

Highlighting the base zone effect on the compression and recovery properties of the rugs with innovating Double-Base Persian rug

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1475-1483 | Received 19 Nov 2018, Accepted 29 Mar 2019, Published online: 25 Apr 2019

References

  • Barach, J. L. (1949). Dynamic studies of carpet resilience. Textile Research Journal, 19(6), 355–362. doi: 10.1177/004051754901900606
  • Carnaby, G. A. (1981). The mechanics of carpet wear. Textile Research Journal, 51(8), 514–519. doi: 10.1177/004051758105100804
  • Celik, N., & Koc, E. (2007). An Experimental study on thickness loss of Wilton type carpets produced with different pile materials after prolonged heavy static loading. Part 2 – energy absorption and hysteresis effect. Fibres & Textiles in Eastern Europe, 15(3), 87–92.
  • Dadgar, M., Merati, A. A., & Hosseini Varkiyani, S. M. (2016). Evaluation of the pinpoint effect on carpet appearance. The Journal of the Textile Institute, 107(1), 107–115.
  • Dayiary, M. (2015). Study on compressional energy contribution into total energy of pile deformation in cut-pile carpet. The Journal of the Textile Institute, 106(12), 1315–1321. doi: 10.1080/00405000.2014.988436
  • Dayiary, M., Najar, S. S., & Shamsi, M. (2009). A new theoretical approach to cut-pile carpet compression based on elastic-stored bending energy. The Journal of the Textile Institute, 100(8), 688–694. doi: 10.1080/00405000802170242
  • Dayiary, M., Najar, S. S., & Shamsi, M. (2010). An experimental verification of cut-pile carpet compression behavior. The Journal of the Textile Institute, 101(6), 488–494. doi: 10.1080/00405000802542242
  • Dunlop, J. I., & Jie, S. (1991). The dynamic mechanical response of carpets: an alternative measurement technique. Journal of the Textile Institute, 82(3), 353–359. doi: 10.1080/00405009108659219
  • El-Shiekh, A., & Hersh, S. P. (1969). The mechanics of looped-pile carpets: Part I: Deformation. Textile Research Journal, 39(12), 1134–1150. doi: 10.1177/004051756903901209
  • Erdoğan, Ü. H. (2012). Effect of pile fiber cross section shape on compression properties of polypropylene carpets. Journal of the Textile Institute, 103(12), 1369–1375. doi: 10.1080/00405000.2012.685558
  • Grover, G., Zhu, S., & Twilley, I. C. (1993). Dynamic mechanical properties of carpet yarns and carpet performance. Textile Research Journal, 63(5), 257–266. doi: 10.1177/004051759306300502
  • Ishtiaque, S. M., Sen, K., & Kumar, A. (2015a). Influence of yarn structures; part A: on carpet compressional performance under static and dynamic conditions. The Journal of the Textile Institute, 106(11), 1190. doi: 10.1080/00405000.2014.982373
  • Ishtiaque, S. M., Sen, K., & Kumar, A. (2015b). New approaches to engineer the yarn structure; Part A: For better carpet performance. Journal of Industrial Textiles, 44(4), 605–624. doi: 10.1177/1528083713505632
  • Ishtiaque, S. M., Sen, K., & Kumar, A. (2016). Influence of yarn structures; part B-on performance and functional properties of carpets. The Journal of the Textile Institute, 107(6), 683–690. doi: 10.1080/00405000.2015.1061735
  • Javidpanah, M., Shaikhzadeh Najar, S., & Dayiary, M. (2014). Study on thickness loss of cut-pile carpet produced with heat process-modified polyester pile yarn. Part I: static loading. The Journal of the Textile Institute, 105(12), 1265–1271. doi: 10.1080/00405000.2013.876151
  • Javidpanah, M., Shaikhzadeh Najar, S., & Dayiary, M. (2015). Study on thickness loss of cut-pile carpet produced with heat process modified polyester pile yarn. Part II: dynamic loading. The Journal of the Textile Institute, 106(3), 236–241. doi: 10.1080/00405000.2014.912784
  • Kimura, K., & Kawabata, S. (1972). Improvement of compressive deformation theory of carpets and its application to carpet woven with compressible yarns. Journal of the Textile Machinery Society of Japan, 18(5/6), 141–148. doi: 10.4188/jte1955.18.141
  • Koc, E., Celik, N., & Tekin, M. (2005). An experimental study on thickness loss of Wilton-type carpets produced with different pile materials after prolonged heavy static loading. Part 1, characteristic parameters and carpet behaviour. Fibres & Textiles in Eastern Europe, 4(52), 56–62.
  • Korkmaz, Y., & Kocer, S. D. (2010). Resilience behaviors of woven acrylic carpets under short-and long-term static loading. The Journal of the Textile Institute, 101(3), 236–241. doi: 10.1080/00405000802376161
  • Laughlin, K. C., & Cusick, G. E. (1967). Carpet performance evaluation: Part I: The tetrapod walker test. Textile Research Journal, 37(7), 608–612. doi: 10.1177/004051756703700709
  • Laughlin, K. C., & Cusick, G. E. (1968). Carpet performance evaluation: Part II: stress—strain behavior. Textile Research Journal, 38(1), 72–80. doi: 10.1177/004051756803800109
  • Mirjalili, S. A., & Sharzehee, M. (2005a). An investigation on the effect of static and dynamic loading on the physical characteristics of handmade Persian carpets: Part I–the effect of static loading. Journal of the Textile Institute, 96(5), 287–293. doi: 10.1533/joti.2004.0001
  • Mirjalili, S. A., & Sharzehee, M. (2005b). A study and investigation on the influence of static and dynamic loading on the properties of handmade persian carpet (I). Fibers and Polymers, 6(2), 139–145. doi: 10.1007/BF02875605
  • Önder, E., & Berkalp, Ö. B. (2001). Effects of different structural parameters on carpet physical properties. Textile Research Journal, 71(6), 549–555. doi: 10.1177/004051750107100613
  • Pourdeyhimi, B., Ramanathan, R., & Javadpour, S. (1994). A new carpet wear simulator. Textile Research Journal, 64(9), 528–533. doi: 10.1177/004051759406400906
  • Schappel, J. W. (1956). Performance characteristics of synthetic fibers, wool, viscose, and blended fibers in Axminster carpets. Textile Research Journal, 26(3), 211–226. doi: 10.1177/004051755602600305
  • Sheikhi, H., Shaikhzadeh, N. S., Etrati, S. M., & Dayiary Bidgoly, M. (2012). Effect of the acrylic fibre blend ratio on carpet pile yarn compression behaviour. Fibres & Textiles in Eastern Europe, 4(93), 7781.
  • Tabatabaei, S. M., & Ghane, M. (2015). Effect of traffic exposure on toughness characteristics of hand-knotted carpets. Fibres and Textiles in Eastern Europe, 23(3), 64–68. doi: 10.5604/12303666.1152483
  • Tabatabaei, S. M., Ghane, M., Hamadani, A. Z., & Hasani, H. (2014). Modeling the Performance Properties on Woolen Hand-knotted Carpets using Response Surface Methodology. Journal of Fashion Technology & Textile Engineering, 2(3), 2–7.
  • Tabatabaei, S. M., Ghane, M., Hamadani, A. Z., & Hasani, H. (2017). Useful life prediction of woolen hand-knotted carpets using multivariate multiple regression. The Journal of the Textile Institute, 108(5), 821–828. doi: 10.1080/00405000.2016.1193980
  • Van Langenhove, L., & Milasius, R. (2008). Influence of pile height and density on the end-use properties of carpets. Fibres & Textiles in Eastern Europe, 16(3), 68.
  • Vangheluwe, L., & Kiekens, P. (1997). Resilience properties of polypropylene carpets. Textile Research Journal, 67(9), 671–676. doi: 10.1177/004051759706700906
  • Werny, F. (1993). A statistical model for bulk and texture retention in residential Saxony carpets. Textile Research Journal, 63(4), 194–204. doi: 10.1177/004051759306300402

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.