161
Views
2
CrossRef citations to date
0
Altmetric
Articles

Optimization of lipase activity under various chemo-physical conditions for hydrolysis of polyester fabric using multiple statistical approaches

, &
Pages 826-834 | Received 17 Jul 2017, Accepted 29 Aug 2019, Published online: 18 Sep 2019

References

  • Açikel, U., Erşan, M., & Sağ Açıkel, Y. (2011). The effects of the composition of growth medium and fermentation conditions on the production of lipase by R. delemar. Turkish Journal of Biology, 35, 35–44. doi:10.3906/biy-0902-14
  • Carniel, A., Valoni, É., Nicomedes, J., Gomes, A. D C., & Castro, A. M. D. (2017). Lipase from Candida antarctica (CALB) and cutinase from Humicola insolens act synergistically for PET hydrolysis to terephthalic acid. Process Biochemistry, 59, 84–90. doi:10.1016/j.procbio.2016.07.023
  • Chaudhuri, S., Chakraborty, R., & Bhattacharya, P. (2013). Optimization of biodegradation of natural fiber (Chorchorus capsularis): HDPE composite using response surface methodology. Iranian Polymer Journal, 22(11), 865–875. doi:10.1007/s13726-013-0185-8
  • Donelli, I., Taddei, P., Smet, P. F., Poelman, D., Nierstrasz, V. A., & Freddi, G. (2009). Enzymatic surface modification and functionalization of PET: A water contact angle, FTIR, and fluorescence spectroscopy study. Biotechnology and Bioengineering, 103(5), 845–856. doi:10.1002/bit.22316
  • Fromm, H. J. (1975). The effect of temperature and pH on enzyme activity initial rate enzyme kinetics (pp. 201–235). Berlin, Germany: Springer Berlin Heidelberg.
  • Gubitz, G. M., & Paulo, A. C. (2003). New substrates for reliable enzymes: Enzymatic modification of polymers. Current Opinion in Biotechnology, 14(6), 577–582.
  • Karaca, B., Demir, A., Özdoğan, E., & İşmal, Ö. E. (2010). Environmentally benign alternatives: Plasma and enzymes to improve moisture management properties of knitted PET fabrics. Fibers and Polymers, 11(7), 1003–1009. doi:10.1007/s12221-010-1003-y
  • Kardas, I., Lipp-Symonowicz, B., & Sztajnowski, S. (2009). Comparison of the effect of PET fibres’ surface modification using enzymes and chemical substances with respect to changes in mechanical properties. Fibres and Textiles in Eastern Europe, 75, 93–97.
  • Karna, D. S., Ran, V., Singh, R., & Sahai, R. (2012). Application of Taguchi method in Indian industry. International Journal of Emerging Technology and Advance Engineering, 2, 387–391.
  • Kim, H. R., & Song, W. S. (2008). Optimization of enzymatic treatment of polyester fabrics by lipase from Porcine Pancreas. Fibers and Polymers, 9(4), 423–430. doi:10.1007/s12221-008-0068-3
  • Kumar, J. A., & Kumar, M. S. (2019). A study on improving dyeability of polyester fabric using lipase enzyme. (0). Retrieved from 10.2478/aut-2019-0030
  • Lee, S. H., & Song, W. S. (2010). Surface modification of polyester fabrics by enzyme treatment. Fibers and Polymers, 11(1), 54–59. doi:10.1007/s12221-010-0054-4
  • Liu, Y. Y., Xu, J. H., & Hu, Y. (2000). Enhancing effect of Tween-80 on lipase performance in enantioselective hydrolysis of ketoprofen ester. Journal of Molecular Catalysis B: Enzymatic, 10(5), 523–529. doi:10.1016/S1381-1177(00)00093-X
  • Lopes, D. B., Fraga, L. P., Fleuri, L. F., & Macedo, G. A. (2011). Lipase and esterase: To what extent can this classification be applied accurately? Ciência e Tecnologia de Alimentos, 31(3), 603–613. doi:10.1590/S0101-20612011000300009
  • Mirshahi, F., Khosravi, A., Gharanjig, K., & Fakhari, J. (2013). Antimicrobial properties of treated cotton fabrics with non-toxic biopolymers and their dyeing with safflower and walnut hulls. Iranian Polymer Journal, 22(11), 843–851. doi:10.1007/s13726-013-0183-x
  • Mueller, R. J. (2006). Biological degradation of synthetic polyesters—enzymes as potential catalysts for polyester recycling. Process Biochemistry, 41(10), 2124–2128. doi:10.1016/j.procbio.2006.05.018
  • Nawani, N., Dosanjh, N. S., & Kaur, J. (1998). A novel thermostable lipase from a thermophilic Bacillus sp.: Characterization and esterification studies. Biotechnology Letters, 20(10), 997–1000. doi:10.1023/a:1005414428737
  • Patel, N., Rai, D., Shivam, Shahane, S., & Mishra, U. (2019). Lipases: Sources, production, purification, and applications. Recent Patents on Biotechnology, 13(1), 45–56. doi:10.2174/1872208312666181029093333
  • Raza, Z. A., Ahmad, N., & Kamal, S. (2014). Multi-response optimization of rhamnolipid production using grey rational analysis in Taguchi method. Biotechnology Reports, 3, 86–94. doi:10.1016/j.btre.2014.06.007
  • Rehman, A., Raza, Z. A., Masood, R., Hussain, M. T., & Ahmad, N. (2015). Multi-response optimization in enzymatic desizing of cotton fabric under various chemo-physical conditions using a Taguchi approach. Cellulose, 22(3), 2107–2116. doi:10.1007/s10570-015-0598-y
  • Strub, M., & Cieszewski, C. J. (2012). The comparative r2 and its application to self-referencing models. Mathematical & Computational Forestry & Natural Resource Sciences, 4, 73–76.
  • Tang, X., Tian, M., Qu, L., Zhu, S., Guo, X., Han, G., & Sun, K. (2015). Water-repellent flexible fabric strain sensor based on polyaniline/titanium dioxide-coated knit polyester fabric. Iranian Polymer Journal, 24(8), 697–704. doi:10.1007/s13726-015-0361-0
  • Tomke, P. D., Zhao, X., Chiplunkar, P. P., Xu, B., Wang, H., Silva, C., … Cavaco-Paulo, A. (2017). Lipase-ultrasound assisted synthesis of polyesters. Ultrasonics Sonochemistry, 38, 496–502. doi:10.1016/j.ultsonch.2017.03.051
  • Vertommen, M. A. M. E., Nierstrasz, V. A., Veer, M. V D., & Warmoeskerken, M. M. C. G. (2005). Enzymatic surface modification of poly (ethylene terephthalate). Journal of Biotechnology, 120(4), 376–386. doi:10.1016/j.jbiotec.2005.06.015
  • Vigneswaran, C., Ananthasubramanian, M., & Kandhavadivu, P. (2014). 4 - Bioprocessing of synthetic fibres. In C. Vigneswaran, M. Ananthasubramanian, & P. Kandhavadivu (Eds.), Bioprocessing of textiles (pp. 189–250). Delhi, India: Woodhead Publishing India.
  • Wang, X., Lu, D., Jönsson, L. J., & Hong, F. (2008). Preparation of a PET-hydrolyzing lipase from Aspergillus oryzae by the addition of bis(2-hydroxyethyl) terephthalate to the culture medium and enzymatic modification of PET fabrics. Engineering in Life Sciences, 8(3), 268–276. doi:10.1002/elsc.200700058

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.