722
Views
22
CrossRef citations to date
0
Altmetric
Articles

Ag nanoparticles-coated cotton fabric for durable antibacterial activity: derived from phytic acid–Ag complex

, , , , &
Pages 855-861 | Received 20 May 2019, Accepted 05 Sep 2019, Published online: 26 Sep 2019

References

  • Ahmed, H. B., & Emam, H. E. (2016). Layer by layer assembly of nanosilver for high performance cotton fabrics. Fibers and Polymers, 17(3), 418–426. doi:10.1007/s12221-016-5814-3
  • Annalisa, C., Francesca, B., Giulio, M., Chiara, M., & Monica, P. (2016). DNA-chitosan cross-linking and photografting to cotton fabrics to improve washing fastness of the fire-resistant finishing. Cellulose, 23(6), 3963–3984. doi:10.1007/s10570-016-1067-y
  • Attia, N. F., & Morsy, M. S. (2016). Facile synthesis of novel nanocomposite as antibacterial and flame retardant material for textile fabrics. Materials Chemistry and Physics, 180, 364–372. doi:10.1016/j.matchemphys.2016.06.019
  • Becenen, N., & Altun, O. (2018). Investigation of the wettability and washing, perspiration and rubbing fastness of denim fabric in the presence of some nano-metal oxides and nano-Ag. The Journal of the Textile Institute, 109(7), 914–919. doi:10.1080/00405000.2017.1385967
  • Bhuiyan, M. A. R., Hossain, M. A., Zakaria, M., Islam, M. N., & Uddin, M. Z. (2017). Chitosan coated cotton fiber: Physical and antimicrobial properties for apparel use. Journal of Polymers and the Environment, 25(2), 334–342. doi:10.1007/s10924-016-0815-2
  • Cheng, X. W., Guan, J. P., Chen, G. Q., Yang, X. H., & Tang, R. C. (2016). Adsorption and flame retardant properties of bio-based phytic acid on wool fabric. Polymers, 8(4), 122. doi:10.3390/polym8040122
  • Cheng, X. W., Guan, J. P., Tang, R. C., & Liu, K. Q. (2016). Phytic acid as a bio-based phosphorus flame retardant for poly(lactic acid) nonwoven fabric. Journal of Cleaner Production, 124, 114–119. doi:10.1016/j.jclepro.2016.02.113
  • Chung, C., Lee, M., & Choe, E. K. (2004). Characterization of cotton fabric scouring by FT-IR ATR spectroscopy. Carbohydrate Polymers, 58(4), 417–420. doi:10.1016/j.carbpol.2004.08.005
  • Cong, Y., Xia, T., Zou, M., Li, Z. N., Peng, B., Guo, D. Z., & Deng, Z. W. (2014). Mussel-inspired polydopamine coating as a versatile platform for synthesizing polystyrene/Ag nanocomposite particles with enhanced antibacterial activities. Journal of Materials Chemistry B, 2(22), 3450–3461.
  • Emam, H. E., Saleh, N. H., Nagy, K. S., & Zahran, M. K. (2015). Functionalization of medical cotton by direct incorporation of silver nanoparticles. International Journal of Biological Macromolecules, 78, 249–256. doi:10.1016/j.ijbiomac.2015.04.018
  • Emam, H. E., Saleh, N. H., Nagy, K. S., & Zahran, M. K. (2016). Instantly AgNPs deposition through facile solventless technique for poly-functional cotton fabrics. International Journal of Biological Macromolecules, 84, 308–318. doi:10.1016/j.ijbiomac.2015.12.042
  • Foksowicz-Flaczyk, J., Walentowska, J., Przybylak, M., & Maciejewski, H. (2016). Multifunctional durable properties of textile materials modified by biocidal agents in the sol-gel process. Surface and Coatings Technology, 304, 160–166. doi:10.1016/j.surfcoat.2016.06.062
  • Gao, W. R., Wang, X. M., Xu, W. Q., & Xu, S. P. (2014). Luminescent composite polymer fibers: In situ synthesis of silver nanoclusters in electrospun polymer fibers and application. Materials Science and Engineering: C, 42, 333–340. doi:10.1016/j.msec.2014.05.020
  • Guo, F., Wen, Q. Y., Peng, Y. B., & Guo, Z. G. (2017). Simple one-pot approach toward robust and boiling-water resistant superhydrophobic cotton fabric and the application in oil/water separation. Journal of Materials Chemistry A, 5(41), 21866–21874. doi:10.1039/C7TA05599D
  • Kim, H. W., Kim, B. R., & Rhee, Y. H. (2010). Imparting durable antimicrobial properties to cotton fabrics using alginate–quaternary ammonium complex nanoparticles. Carbohydrate Polymers, 79(4), 1057–1062. doi:10.1016/j.carbpol.2009.10.047
  • Kundu, C. K., Wang, W., Zhou, S., Wang, X., Sheng, H. B., Pan, Y., & Hu, Y. A. (2017). A green approach to constructing multilayered nanocoating for flame retardant treatment of polyamide 66 fabric from chitosan and sodium alginate. Carbohydrate Polymers, 166, 131–138. doi:10.1016/j.carbpol.2017.02.084
  • Le Ouay, B., & Stellacci, F. (2015). Antibacterial activity of silver nanoparticles: A surface science insight. Nano Today, 10(3), 339–354. doi:10.1016/j.nantod.2015.04.002
  • Li, J., Yan, L., Zhao, Y. Z., Zha, F., Wang, Q. T., & Lei, Z. Q. (2015). One-step fabrication of robust fabrics with both-faced superhydrophobicity for the separation and capture of oil from water. Physical Chemistry Chemical Physics, 17(9), 6451–6457. doi:10.1039/C5CP00154D
  • Li, S. H., Zhu, T. X., Huang, J. Y., Guo, Q. Q., Chen, G. Q., & Lai, Y. K. (2017). Durable antibacterial and UV-protective Ag/TiO2@fabrics for sustainable biomedical application. International Journal of Nanomedicine, 12, 2593–2606.
  • Li, Z. R., Meng, J., Wang, W., Wang, Z. Y., Li, M. Y., Chen, T., & Liu, C. J. (2017). The room temperature electron reduction for the preparation of silver nanoparticles on cotton with high antimicrobial activity. Carbohydrate Polymers, 161, 270–276. doi:10.1016/j.carbpol.2017.01.020
  • Lin, J., Chen, X. Y., Chen, C. Y., Hu, J. T., Zhou, C. L., Cai, X. F., … Liu, H. (2018). Durably antibacterial and bacterially antiadhesive cotton fabrics coated by cationic fluorinated polymers. ACS Applied Materials & Interfaces, 10(7), 6124–6136. doi:10.1021/acsami.7b16235
  • Manna, J., Goswami, S., Shilpa, N., Sahu, N., & Rana, R. K. (2015). Biomimetic method to assemble nanostructured Ag@ZnO on cotton fabrics: Application as self-cleaning flexible materials with visible-light photocatalysis and antibacterial activities. ACS Applied Materials & Interfaces, 7(15), 8076–8082. doi:10.1021/acsami.5b00633
  • Meng, M., He, H. W., Xiao, J., Zhao, P., Xie, J. L., & Lu, Z. S. (2016). Controllable in situ synthesis of silver nanoparticles on multilayered film-coated silk fibers for antibacterial application. Journal of Colloid and Interface Science, 461, 369–375. doi:10.1016/j.jcis.2015.09.038
  • Mihailovic, D., Saponjic, Z., Radoicic, M., Radetic, T., Jovancic, P., Nedeljkovic, J., & Radetic, M. (2010). Functionalization of polyester fabrics with alginates and TiO2 nanoparticles. Carbohydrate Polymers, 79(3), 526–532.
  • Noorian, S. A., Hemmatinejad, N., & Bashari, A. (2015). One-pot synthesis of Cu2O/ZnO nanoparticles at present of folic acid to improve UV-protective effect of cotton fabrics. Photochemistry and Photobiology, 91(3), 510–517. doi:10.1111/php.12420
  • Pivec, T., Hribernik, S., Kolar, M., & Kleinschek, K. S. (2017). Environmentally friendly procedure for in-situ coating of regenerated cellulose fibres with silver nanoparticles. Carbohydrate Polymers, 163, 92–100. doi:10.1016/j.carbpol.2017.01.060
  • Prasad, V., Arputharaj, A., Bharimalla, A. K., Patil, P. G., & Vigneshwaran, N. (2016). Durable multifunctional finishing of cotton fabrics by in situ synthesis of nano-ZnO. Applied Surface Science, 390, 936–940. doi:10.1016/j.apsusc.2016.08.155
  • Pujari, S. P., Scheres, L., Marcelis, A. T. M., & Zuilhof, H. (2014). Covalent surface modification of oxide surfaces. Angewandte Chemie International Edition, 53(25), 6322–6356. doi:10.1002/anie.201306709
  • Rehan, M., Barhoum, A., Van Assche, G., Dufresne, A., Gatjen, L., & Wilken, R. (2017). Towards multifunctional cellulosic fabric: UV photo-reduction and in-situ synthesis of silver nanoparticles into cellulose fabrics. International Journal of Biological Macromolecules, 98, 877–886. doi:10.1016/j.ijbiomac.2017.02.058
  • Rehan, M., Mowafi, S., Aly, S. A., Elshemy, N. S., & Haggag, K. (2017). Microwave-heating for in-situ Ag NPs preparation into viscose fibers. European Polymer Journal, 86, 68–84. doi:10.1016/j.eurpolymj.2016.11.022
  • Rehan, M., Zaghloul, S., Mahmoud, F. A., Montaser, A. S., & Hebeish, A. (2017). Design of multi-functional cotton gauze with antimicrobial and drug delivery properties. Materials Science and Engineering: C, 80, 29–37. doi:10.1016/j.msec.2017.05.093
  • Suryaprabha, T., & Sethuraman, M. (2017). Fabrication of copper-based superhydrophobic self-cleaning antibacterial coating over cotton fabric. Cellulose, 24(1), 395–407. doi:10.1007/s10570-016-1110-z
  • Tian, H. R., Zhai, Y. S., Xu, C., & Liang, J. (2017). Durable antibacterial cotton fabrics containing stable acyclic N-halamine groups. Industrial & Engineering Chemistry Research, 56(28), 7902–7909. doi:10.1021/acs.iecr.7b00863
  • Xu, Q. B., Wu, Y. H., Zhang, Y. Y., Fu, F. Y., & Liu, X. D. (2016). Durable antibacterial cotton modified by silver nanoparticles and chitosan derivative binder. Fibers and Polymers, 17(11), 1782–1789. doi:10.1007/s12221-016-6609-2
  • Yazdanshenas, M. E., & Shateri-Khalilabad, M. (2012). The effect of alkali pre-treatment on formation and adsorption of silver nanoparticles on cotton surface. Fibers and Polymers, 13(9), 1170–1178. doi:10.1007/s12221-012-1170-0
  • Yu, D., Xu, L. J., Hu, Y., Li, Y. I., & Wang, W. (2017). Durable antibacterial finishing of cotton fabric based on thiol-epoxy click chemistry. RSC Advances, 7(31), 18838–18843. doi:10.1039/C6RA28803K
  • Zhang, D. S., Chen, L., Zang, C. F., Chen, Y. Y., & Lin, H. (2013). Antibacterial cotton fabric grafted with silver nanoparticles and its excellent laundering durability. Carbohydrate Polymers, 92(2), 2088–2094. doi:10.1016/j.carbpol.2012.11.100
  • Zhang, D. S., Toh, G. W., Lin, H., & Chen, Y. Y. (2012). In situ synthesis of silver nanoparticles on silk fabric with PNP for antibacterial finishing. Journal of Materials Science, 47(15), 5721–5728. doi:10.1007/s10853-012-6462-7
  • Zhang, M., Zang, D. L., Shi, J. Y., Gao, Z. X., Wang, C. Y., & Li, J. (2015). Superhydrophobic cotton textile with robust composite film and flame retardancy. RSC Advances, 5(83), 67780–67786. doi:10.1039/C5RA09963C
  • Zhang, Y. Y., Xu, Q. B., Fu, F. Y., & Liu, X. D. (2016). Durable antimicrobial cotton textiles modified with inorganic nanoparticles. Cellulose, 23(5), 2791–2808. doi:10.1007/s10570-016-1012-0
  • Zhou, C. L., Chen, Z. D., Yang, H., Hou, K., Zeng, X. J., Zheng, Y. F., & Cheng, J. (2017). Nature-inspired strategy toward superhydrophobic fabrics for versatile oil/water separation. ACS Applied Materials & Interfaces, 9(10), 9184–9194. doi:10.1021/acsami.7b00412

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.