144
Views
12
CrossRef citations to date
0
Altmetric
Articles

Experimental and macro finite element modeling studies on conformability behavior of woven nylon 66 composite reinforcement

ORCID Icon, & ORCID Icon
Pages 874-881 | Received 01 Feb 2019, Accepted 14 Sep 2019, Published online: 08 Oct 2019

References

  • Abaqus (2016). Abaqus analysis user’s guide, Fabric material behavior, part: 23.4.1. Retrieved from http://abaqus.software.polimi.it.
  • Afshin, E., & Kadkhodayan, M. (2015). An experimental investigation into the warm deep-drawing process on laminated sheets under various grain sizes. Materials & Design, 87, 25–35. doi:10.1016/j.matdes.2015.07.061
  • Akkerman, R. (2007). Constitutive modelling for composite forming (pp. 22–45). Cambridge, UK: Composites Forming Technologies, Woodhead Publishing Ltd.
  • Allaoui, S., Boisse, P., Chatel, S., Hamila, N., Hivet, G., Soulat, D., & Vidal-Salle, E. (2011). Experimental and numerical analyses of textile reinforcement forming of a tetrahedral shape. Composites Part A: Applied Science and Manufacturing, 42(6), 612–622. doi:10.1016/j.compositesa.2011.02.001
  • Azrin Hani, A. R., Hashim, M. S., Lim, T. Y., Mariatti, M., & Ahmad, R. (2016). Impact behaviour of woven coir-epoxy composite: Effects of woven density and woven fabric treatment. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 230(1), 240–251. doi:10.1177/1464420714567744
  • Badel, P., Gauthier, S., Vidal-Sallé, E., & Boisse, P. (2009). Rate constitutive equations for computational analyses of textile composite reinforcement mechanical behaviour during forming. Composites Part A: Applied Science and Manufacturing, 40(8), 997–1007. doi:10.1016/j.compositesa.2008.04.015
  • Badel, P., Vidal-Sallé, E., & Boisse, P. (2008). Large deformation analysis of fibrous materials using rate constitutive equations. Computers & Structures, 86(11–12), 1164–1175. doi:10.1016/j.compstruc.2008.01.009
  • Boisse, P., Aimène, Y., Dogui, A., Dridi, S., Gatouillat, S., Hamila, N., … Vidal-Sallé, E. (2010). Hypoelastic, hyperelastic, discrete and semi-discrete approaches for textile composite reinforcement forming. International Journal of Material Forming, 3(S2), 1229–1240. doi:10.1007/s12289-009-0664-9
  • Boisse, P., Hamila, N., Vidal-Sallé, E., & Dumont, F. (2011). Simulation of wrinkling during textile composite reinforcement forming. Influence of tensile, in-plane shear and bending stiffnesses. Composites Science and Technology, 71(5), 683–692. doi:10.1016/j.compscitech.2011.01.011
  • Doustar, K., Najar, S. S., & Maroufi, M. (2010). The effect of fabric design and weft density on bagging behavior of cotton woven fabrics. Journal of the Textile Institute, 101(2), 135–142. doi:10.1080/00405000802309584
  • Dwivedi, R., & Agnihotri, G. (2015). Numerical simulation of aluminum and brass material cups in deep drawing process. Materials Today: Proceedings, 2(5), 1942–1950. doi:10.1016/j.matpr.2015.07.159
  • Hamila, N., Boisse, P., & Chatel, S. (2009). Semi-discrete shell finite elements for textile composite forming simulation. International Journal of Material Forming, 2(S1), 169–172. doi:10.1007/s12289-009-0518-5
  • Heisey, F., Brown, P., & Johnson, R. F. (1990). Three-dimensional pattern drafting: Part I: Projection. Textile Research Journal, 60(11), 690–696. doi:10.1177/004051759006001110
  • Hivet, G., & Boisse, P. (2008). Consistent mesoscopic mechanical behaviour model for woven composite reinforcements in biaxial tension. Composites Part B: Engineering, 39(2), 345–361. doi:10.1016/j.compositesb.2007.01.011
  • Khan, M. A., Mabrouki, T., Vidal-Sallé, E., & Boisse, P. (2010). Numerical and experimental analyses of woven composite reinforcement forming using a hypoelastic behaviour. Application to the double dome benchmark. Journal of Materials Processing Technology, 210(2), 378–388. doi:10.1016/j.jmatprotec.2009.09.027
  • Lee, W., & Cao, J. (2009). Numerical simulations on double-dome forming of woven composites using the coupled non-orthogonal constitutive model. International Journal of Material Forming, 2(S1), 145–148. doi:10.1007/s12289-009-0499-4
  • Lee, J. S., Hong, S. J., Yu, W.-R., & Kang, T. J. (2007). The effect of blank holder force on the stamp forming behavior of non-crimp fabric with a chain stitch. Composites Science and Technology, 67(3–4), 357–366. doi:10.1016/j.compscitech.2006.09.009
  • Lee, W., Padvoiskis, J., Cao, J., de Luycker, E., Boisse, P., Morestin, F., … Sherwood, J. (2008). Bias-extension of woven composite fabrics. International Journal of Material Forming, 1(S1), 895–898. doi:10.1007/s12289-008-0240-8
  • Messiry, M. E., & El-Tarfawy, S. (2019). Mechanical properties and buckling analysis of woven fabric. Textile Research Journal, 89(14), 2900–2918. doi:10.1177/0040517518803777
  • Nassif, G. A. A. (2012). Effect of weave structure and weft density on the physical and mechanical properties of micro polyester woven fabrics. Journal of American Science, 8(8), 947–952.
  • Nosraty, H. (2015). Intraply hybrid composites based on basalt and nylon woven fabrics: Tensile and compressive properties. Iranian Journal of Materials Science and Engineering, 12, 1–11.
  • Özdemir, H., & Mert, E. (2013). The effects of fabric structural parameters on the tensile, bursting, and impact strengths of cellular woven fabrics. Journal of the Textile Institute, 104(3), 330–338. doi:10.1080/00405000.2012.725521
  • Peng, X. Q., & Cao, J. (2005). A continuum mechanics-based non-orthogonal constitutive model for woven composite fabrics. Composites Part A: Applied Science and Manufacturing, 36(6), 859–874. doi:10.1016/j.compositesa.2004.08.008
  • Peng, X. Q., Cao, J., Chen, J., Xue, P., Lussier, D. S., & Liu, L. (2004). Experimental and numerical analysis on normalization of picture frame tests for composite materials. Composites Science and Technology, 64(1), 11–21. doi:10.1016/S0266-3538(03)00202-1
  • Peng, X., & Rehman, Z. U. (2011). Textile composite double dome stamping simulation using a non-orthogonal constitutive model. Composites Science and Technology, 71(8), 1075–1081. doi:10.1016/j.compscitech.2011.03.010
  • Potiuri, P. (2001). Comprehensive Drape Modeling for Moulding 3D Textile Performs. Composites: Part A, 60(10), 1415–1424.
  • Rajabi, A., Kadkhodayan, M., Manoochehri, M., & Farjadfar, R. (2015). Deep-drawing of thermoplastic metal-composite structures: Experimental investigations, statistical analyses and finite element modeling. Journal of Materials Processing Technology, 215, 159–170. doi:10.1016/j.jmatprotec.2014.08.012
  • Rashidi, A., & Milani, A. S. (2018). Passive control of wrinkles in woven fabric preforms using a geometrical modification of blank holders. Composites Part A: Applied Science and Manufacturing, 105, 300–309. doi:10.1016/j.compositesa.2017.11.023
  • Rout, D. (2015). Study on Effect of Picks per Inch on Fabric Properties. International Journal on Textile Engineering and Processes, 1(4), 73–77.
  • Skordos, A. A., Monroy Aceves, C., & Sutcliffe, M. P. F. (2007). A simplified rate dependent model of forming and wrinkling of pre-impregnated woven composites. Composites Part A: Applied Science and Manufacturing, 38(5), 1318–1330. doi:10.1016/j.compositesa.2006.11.005
  • Tavana, R., Najar, S. S., Abadi, M. T., & Sedighi, M. (2013). Meso/macro-scale finite element model for forming process of woven fabric reinforcements. Journal of Composite Materials, 47(17), 2075–2085. doi:10.1177/0021998312454034
  • Van Der Weeën, F. (1991). Algorithms for draping fabrics on doubly‐curved surfaces. International Journal for Numerical Methods in Engineering, 31(7), 1415–1426. doi:10.1002/nme.1620310712
  • Varsei, M., Shaikhzadeh Najar, S., Hosseini, M., & Seyed Razzaghi, M. (2013). Bending properties of fine-grained concrete composite beams reinforced with single-layer carbon/polypropylene woven fabrics with different weave designs and thread densities. Journal of the Textile Institute, 104(11), 1213–1220. doi:10.1080/00405000.2013.787269
  • Xue, P., Peng, X., & Cao, J. (2003). A non-orthogonal constitutive model for characterizing woven composites. Composites Part A: Applied Science and Manufacturing, 34(2), 183–193. doi:10.1016/S1359-835X(02)00052-0
  • Yu, W. R., Zampaloni, M., Pourboghrat, F., Chung, K., & Kang, T. J. (2005). Analysis of flexible bending behavior of woven preform using non-orthogonal constitutive equation. Composites Part A: Applied Science and Manufacturing, 36(6), 839–850. doi:10.1016/j.compositesa.2004.10.026

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.