789
Views
19
CrossRef citations to date
0
Altmetric
Articles

Fabrication of core-sheath nanoyarn via touchspinning and its application in wearable piezoelectric nanogenerator

, , , , , & show all
Pages 906-915 | Received 21 Apr 2019, Accepted 29 Sep 2019, Published online: 17 Oct 2019

References

  • Abolhasani, M. M., Shirvanimoghaddam, K., & Naebe, M. (2017). PVDF/graphene composite nanofibers with enhanced piezoelectric performance for development of robust nanogenerators. Composites Science and Technology, 138, 49–56. doi:10.1016/j.compscitech.2016.11.017
  • Adhikary, P., Garain, S., & Mandal, D. (2015). The co-operative performance of a hydrated salt assisted sponge like P(VDF-HFP) piezoelectric generator: An effective piezoelectric based energy harvester. Physical Chemistry Chemical Physics, 17(11), 7275–7281. doi:10.1039/C4CP05513F
  • Ali, U., Zhou, Y., Wang, X., & Lin, T. (2012). Direct electrospinning of highly twisted, continuous nanofiber yarns. Journal of the Textile Institute, 103(1), 80–88. doi:10.1080/00405000.2011.552254
  • Baniasadi, M., Huang, J., Xu, Z., Moreno, S., Yang, X., Chang, J., … Minary-Jolandan, M. (2015). High-performance coils and yarns of polymeric piezoelectric nanofibers. ACS Applied Materials & Interfaces, 7(9), 5358–5366. doi:10.1021/am508812a
  • Benz, M., & Euler, W. B. (2003). Determination of the crystalline phases of poly(vinylidene fluoride) under different preparation conditions using differential scanning calorimetry and infrared spectroscopy. Journal of Applied Polymer Science, 89(4), 1093–1100. doi:10.1002/app.12267
  • Branciforti, M. C., Sencadas, V., Lanceros-Mendez, S., & Gregorio, R. (2007). New technique of processing highly oriented poly(vinylidene fluoride) films exclusively in the β phase. Journal of Polymer Science Part B: Polymer Physics, 45(19), 2793–2801. doi:10.1002/polb.21239
  • Briscoe, J., & Dunn, S. J. N. E. (2015). Piezoelectric nanogenerators – A review of nanostructured piezoelectric energy harvesters. Nano Energy, 14, 15–29. doi:10.1016/j.nanoen.2014.11.059
  • Chang, C., Tran, V. H., Wang, J., Fuh, Y.-K., & Lin, L. (2010). Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Letters, 10(2), 726–731. doi:10.1021/nl9040719
  • Chang, G., Li, A., Xu, X., Wang, X., & Xue, G. (2016). Twisted polymer microfiber/nanofiber yarns prepared via direct fabrication. Industrial & Engineering Chemistry Research, 55(25), 7048–7051. doi:10.1021/acs.iecr.6b00686
  • Chang, J., Dommer, M., Chang, C., & Lin, L. (2012). Piezoelectric nanofibers for energy scavenging applications. Nano Energy, 1(3), 356–371. doi:10.1016/j.nanoen.2012.02.003
  • De la Garza, D., De Santiago, F., Materon, L., Chipara, M., & Alcoutlabi, M. (2019). Fabrication and characterization of centrifugally spun poly(acrylic acid) nanofibers. Journal of Applied Polymer Science, 136(19), 47480. doi:10.1002/app.47480
  • Fang, J., Wang, X., & Lin, T. (2011). Electrical power generator from randomly oriented electrospun poly(vinylidene fluoride) nanofibre membranes. Journal of Materials Chemistry, 21(30), 11088–11091. doi:10.1039/c1jm11445j
  • Fashandi, H., Abolhasani, M. M., Sandoghdar, P., Zohdi, N., Li, Q., & Naebe, M. (2016). Morphological changes towards enhancing piezoelectric properties of PVDF electrical generators using cellulose nanocrystals. Cellulose, 23(6), 3625–3637. doi:10.1007/s10570-016-1070-3
  • Gomes, A., Rodrigues, C., Pereira, A., & Ventura, J. (2018). Influence of thickness and contact area on the performance of PDMS-based triboelectric nanogenerators. arXiv preprint arXiv:1803.10070.
  • Gregorio, R., Jr., & Cestari, M. (1994). Effect of crystallization temperature on the crystalline phase content and morphology of poly(vinylidene fluoride). Journal of Polymer Science Part B: Polymer Physics, 32(5), 859–870. doi:10.1002/polb.1994.090320509
  • Huipu, G., Pham Thien, M., Hong, W., Sergiy, M., Jason, L., Tho, N., & Suraj, S. (2018). High-performance flexible yarn for wearable piezoelectric nanogenerators. Smart Materials and Structures, 27(9), 095018.
  • Jin, S., Xin, B., Zheng, Y., & Liu, S. (2018). Effect of electric field on the directly electrospun nanofiber yarns: Simulation and experimental study. Fibers and Polymers, 19(1), 116–124. doi:10.1007/s12221-018-7734-2
  • Jin, S., Xin, B., & Zheng, Y. S. (2019). Preparation and characterization of polysulfone amide nanoyarns by the dynamic rotating electrospinning method. Textile Research Journal, 89(1), 52–62. doi:10.1177/0040517517736474
  • Lanceros-Mendez, S., Mano, J., Costa, A., & Schmidt, V. (2001). FTIR and DSC studies of mechanically deformed β-PVDF films. Journal of Macromolecular Science, Part B, 40(3–4), 517–527. doi:10.1081/MB-100106174
  • Lee, J.-H., Yoon, H.-J., Kim, T. Y., Gupta, M. K., Lee, J. H., Seung, W., … Kim, S.-W. (2015). Micropatterned P(VDF-TrFE) film-based piezoelectric nanogenerators for highly sensitive self-powered pressure sensors. Advanced Functional Materials, 25(21), 3203–3209. doi:10.1002/adfm.201500856
  • Lee, S. G., Ha, J.-W., Sohn, E.-H., Park, I. J., & Lee, S.-B. (2016). Enhancement of polar crystalline phase formation in transparent PVDF-CaF2 composite films. Applied Surface Science, 390, 339–345. doi:10.1016/j.apsusc.2016.08.090
  • Levitt, A. S., Vallett, R., Dion, G., & Schauer, C. L. (2018). Effect of electrospinning processing variables on polyacrylonitrile nanoyarns. Journal of Applied Polymer Science, 135(25), 46404. doi:10.1002/app.46404
  • Li, C., Wu, M., & Liu, R. (2019). High-performance bifunctional oxygen electrocatalysts for zinc-air batteries over mesoporous Fe/Co-N-C nanofibers with embedding FeCo alloy nanoparticles. Applied Catalysis B: Environmental, 244, 150–158. doi:10.1016/j.apcatb.2018.11.039
  • Li, L., Zhang, M., Rong, M., & Ruan, W. (2014). Studies on the transformation process of PVDF from [small alpha] to [small beta] phase by stretching. RSC Advances, 4(8), 3938–3943. doi:10.1039/C3RA45134H
  • Li, W., Wu, D., Zhu, S., Liu, Z., Luo, B., Lu, L., & Zhou, C. (2019). Sustained release of plasmid DNA from PLLA/POSS nanofibers for angiogenic therapy. Chemical Engineering Journal, 365, 270–281. doi:10.1016/j.cej.2019.02.043
  • Martins, P., Lopes, A. C., & Lanceros-Mendez, S. (2014). Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Progress in Polymer Science, 39(4), 683–706. doi:10.1016/j.progpolymsci.2013.07.006
  • Martins, R. S., Gonçalves, R., Azevedo, T., Rocha, J. G., Nóbrega, J. M., Carvalho, H., & Lanceros-Mendez, S. (2014). Piezoelectric coaxial filaments produced by coextrusion of poly(vinylidene fluoride) and electrically conductive inner and outer layers. Journal of Applied Polymer Science, 131(17), 40710. doi:10.1002/app.40710
  • Nakagawa, K., & Ishida, Y. (1973). Annealing effects in poly(vinylidene fluoride) as revealed by specific volume measurements, differential scanning calorimetry, and electron microscopy. Journal of Polymer Science Part A-2: Polymer Physics, 11(11), 2153–2171. doi:10.1002/pol.1973.180111107
  • Niu, S., Liu, Y., Wang, S., Lin, L., Zhou, Y. S., Hu, Y., & Wang, Z. L. (2014). Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators. Advanced Functional Materials, 24(22), 3332–3340. doi:10.1002/adfm.201303799
  • Reneker, D. H., Yarin, A. L., Zussman, E., & Xu, H. (2007). Electrospinning of nanofibers from polymer solutions and melts. Advances in Applied Mechanics, 41, 43–346.
  • Roy, S., Thakur, P., Hoque, N. A., Bagchi, B., Sepay, N., Khatun, F., … Das, S. (2017). Electroactive and high dielectric folic acid/PVDF composite film rooted simplistic organic photovoltaic self-charging energy storage cell with superior energy density and storage capability. ACS Applied Materials & Interfaces, 9(28), 24198–24209. doi:10.1021/acsami.7b05540
  • Ruan, L., Yao, X., Chang, Y., Zhou, L., Qin, G., & Zhang, X. J. P. (2018). Properties and applications of the β phase poly(vinylidene fluoride). Polymers, 10(3), 228. doi:10.3390/polym10030228
  • Sajkiewicz, P., Wasiak, A., & Gocłowski, Z. (1999). Phase transitions during stretching of poly(vinylidene fluoride). European Polymer Journal, 35(3), 423–429. doi:10.1016/S0014-3057(98)00136-0
  • Shao, H., Fang, J., Wang, H., & Lin, T. (2015). Effect of electrospinning parameters and polymer concentrations on mechanical-to-electrical energy conversion of randomly-oriented electrospun poly(vinylidene fluoride) nanofiber mats. RSC Advances, 5(19), 14345–14350. doi:10.1039/C4RA16360E
  • Shi, K., Sun, B., Huang, X., & Jiang, P. J. N. E. (2018). Synergistic effect of graphene nanosheet and BaTiO3 nanoparticles on performance enhancement of electrospun PVDF nanofiber mat for flexible piezoelectric nanogenerators. Nano Energy, 52, 153–162. doi:10.1016/j.nanoen.2018.07.053
  • Soin, N., Shah, T. H., Anand, S. C., Geng, J., Pornwannachai, W., Mandal, P., … Siores, E. (2014). Novel “3-D spacer” all fibre piezoelectric textiles for energy harvesting applications. Energy & Environmental Science, 7(5), 1670–1679. doi:10.1039/C3EE43987A
  • Teyssedre, G., Bernes, A., & Lacabanne, C. (1993). Influence of the crystalline phase on the molecular mobility of PVDF. Journal of Polymer Science Part B: Polymer Physics, 31(13), 2027–2034. doi:10.1002/polb.1993.090311316
  • Tokarev, A., Asheghali, D., Griffiths, I. M., Trotsenko, O., Gruzd, A., Lin, X., … Minko, S. (2015). Touch- and brush-spinning of nanofibers. Advanced Materials, 27(41), 6526–6532. doi:10.1002/adma.201502768
  • Wan, C., & Bowen, C. R. (2017). Multiscale-structuring of polyvinylidene fluoride for energy harvesting: The impact of molecular-, micro- and macro-structure. Journal of Materials Chemistry A, 5(7), 3091–3128. doi:10.1039/C6TA09590A
  • Wu, S., Liu, P., Zhang, Y., Zhang, H., & Qin, X. (2017). Flexible and conductive nanofiber-structured single yarn sensor for smart wearable devices. Sensors and Actuators B: Chemical, 252, 697–705. doi:10.1016/j.snb.2017.06.062
  • You, X., He, J., Nan, N., Sun, X., Qi, K., Zhou, Y., … Cui, S. (2018). Stretchable capacitive fabric electronic skin woven by electrospun nanofiber coated yarns for detecting tactile and multimodal mechanical stimuli. Journal of Materials Chemistry C, 6(47), 12981–12991. doi:10.1039/C8TC03631D
  • Zhang, X., & Lu, Y. (2014). Centrifugal spinning: An alternative approach to fabricate nanofibers at high speed and low cost. Polymer Reviews, 54(4), 677–701. doi:10.1080/15583724.2014.935858
  • Zhang, Z., Wu, Q., Song, K., Lei, T., & Wu, Y. (2015). Poly(vinylidene fluoride)/cellulose nanocrystals composites: Rheological, hydrophilicity, thermal and mechanical properties. Cellulose, 22(4), 2431–2441. doi:10.1007/s10570-015-0634-y
  • Zhu, M., Xiong, R., & Huang, C. (2019). Bio-based and photocrosslinked electrospun antibacterial nanofibrous membranes for air filtration. Carbohydrate Polymers, 205, 55–62. doi:10.1016/j.carbpol.2018.09.075

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.