1,563
Views
23
CrossRef citations to date
0
Altmetric
Reviews

Nanotechnology in textile and apparel research – an overview of technologies and processes

ORCID Icon &
Pages 1778-1793 | Received 28 Feb 2019, Accepted 22 Jan 2020, Published online: 03 Feb 2020

References

  • Afzal, S., Daoud, W. A., & Langford, S. J. (2013). Photostable self-cleaning cotton by a copper(II) porphyrin/TiO2 visible-light photocatalytic system. ACS Applied Materials & Interfaces, 5(11), 4753–4759. doi:10.1021/am400002k
  • Ahn, H. W., Park, C. H., & Chung, S. E. (2011). Waterproof and breathable properties of nanoweb applied clothing. Textile Research Journal, 81(14), 1438–1447.
  • Akhavan Sadr, F., & Montazer, M. (2014). In situ sonosynthesis of nano TiO2 on cotton fabric. Ultrasonics Sonochemistry, 21(2), 681–691. doi:10.1016/j.ultsonch.2013.09.018
  • Ali, S. W., Rajendran, S., & Joshi, M. (2011). Synthesis and characterization of chitosan and silver loaded chitosan nanoparticles for bioactive polyester. Carbohydr Polym, 83, 438–446. doi:10.1016/j.carbpol.2010.08.004
  • Alimohammadi, F., Parvinzadeh Gashti, M., & Shamei, A. (2013). Functional cellulose fibers via polycarboxylic acid/carbon nanotube composite coating. Journal of Coatings Technology and Research, 10(1), 123–132. doi:10.1007/s11998-012-9429-3
  • Angammana, C. J., & Jayaram, S. H. (2011). The effects of electric field on the multijet electrospinning process and Fiber morphology. IEEE Transactions on Industry Applications, 47(2), 1028–1035. doi:10.1109/TIA.2010.2103392
  • Arfaoui, M. A., Dolez, P. I., Dubé, M., & David, É. (2017). Development and characterization of a hydrophobic treatment for jute fibres based on zinc oxide nanoparticles and a fatty acid. Applied Surface Science, 397, 19–29. doi:10.1016/j.apsusc.2016.11.085
  • Ashraf, M., Campagne, C., Perwuelz, A., Champagne, P., Leriche, A., & Courtois, C. (2013). Development of superhydrophilic and superhydrophobic polyester fabric by growing Zinc Oxide nanorods. Journal of Colloid and Interface Science, 394, 545–553. doi:10.1016/j.jcis.2012.11.020
  • ASTM (American Society for Testing and Materials). (2013). E96/E96M − 13. Standard test methods for water vapor transmission of materials.
  • Ates, E. S., & Unalan, H. E. (2012). Zinc oxide nanowire enhanced multifunctional coatings for cotton fabrics. Thin Solid Films, 520(14), 4658–4661. doi:10.1016/j.tsf.2011.10.073
  • Augustine, R., Kalarikkal, N., & Thomas, S. (2015). Electrospun PCL membranes incorporated with biosynthesized silver nanoparticles as antibacterial wound dressings. Applied Nanoscience, 6(3), 337–344. doi:10.1007/s13204-015-0439-1
  • Babapoor, A., Karimi, G., Golestaneh, S. I., & Mezjin, M. A. (2017). Coaxial electro-spun PEG/PA6 composite fibers: Fabrication and characterization. Applied Thermal Engineering, 118, 398–407. doi:10.1016/j.applthermaleng.2017.02.119
  • Bae, G. Y., Min, B. G., Jeong, Y. G., Lee, S. C., Jang, J. H., & Koo, G. H. (2009). Superhydrophobicity of cotton fabrics treated with silica nanoparticles and water-repellent agent. Journal of Colloid and Interface Science, 337(1), 170–175. doi:10.1016/j.jcis.2009.04.066
  • Bagherzadeh, R., Latifi, M., Najar, S. S., Tehran, M. A., Gorji, M., & Kong, L. (2012). Transport properties of multi-layer fabric based on electrospun nanofiber mats as a breathable barrier textile material. Textile Research Journal, 82(1), 70–76. doi:10.1177/0040517511420766
  • Behler, K. D., Stravato, A., Mochalin, V., Korneva, G., Yushin, G., & Gogotsi, Y. (2009). Nanodiamond-polymer composite fibers and coatings. ACS Nano, 3(2), 363–369. doi:10.1021/nn800445z
  • Bellan, L. M., Craighead, H. G., & Hinestroza, J. P. (2007). Direct measurement of fluid velocity in an electrospinning jet using particle image velocimetry. Journal of Applied Physics, 102(9), 094308. doi:10.1063/1.2799059
  • Bernkop-Schnürch, A., & Dünnhaupt, S. (2012). Chitosan-based drug delivery systems. European Journal of Pharmaceutics and Biopharmaceutics, 81(3), 463–469. doi:10.1016/j.ejpb.2012.04.007
  • Bhattarai, N., Edmondson, D., Veiseh, O., Matsen, F. A., & Zhang, M. (2005). Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials, 26(31), 6176–6184. doi:10.1016/j.biomaterials.2005.03.027
  • Bhuiyan, M. A. R., Wang, L., Shaid, A., Shanks, R. A., & Ding, J. (2018). Advances and applications of chemical protective clothing system. Journal of Industrial Textiles, 49(1), 97–138. doi:10.1177/1528083718779426
  • Bilotti, E., Zhang, R., Deng, H., Baxendale, M., & Peijs, T. (2010). Fabrication and property prediction of conductive and strain sensing TPU/CNT nanocomposite fibres. Journal of Materials Chemistry, 20(42), 9449–9455. doi:10.1039/c0jm01827a
  • Bourbigot, S., Devaux, E., & Flambard, X. (2002). Flammability of polyamide-6/clay hybrid nanocomposite textiles. Polymer Degradation and Stability, 75(2), 397–402. doi:10.1016/S0141-3910(01)00245-2
  • Bradac, C., & Osswald, S. (2018). Effect of structure and composition of nanodiamond powders on thermal stability and oxidation kinetics. Carbon, 132, 616–622. doi:10.1016/j.carbon.2018.02.102
  • Broasca, G., Borcia, G., Dumitrascu, N., & Vrinceanu, N. (2013). Characterization of ZnO coated polyester fabrics for UV protection. Applied Surface Science, 279, 272–278. doi:10.1016/j.apsusc.2013.04.084
  • Buer, A., Ugbolue, S. C., & Warner, S. B. (2001). Electrospinning and properties of some nanofibers. Textile Research Journal, 71(4), 323–328. doi:10.1177/004051750107100408
  • Chen, C.-C., Wang, C.-C., & Yeh, J.-T. (2010). Improvement of odor elimination and anti-bacterial activity of polyester fabrics finished with composite emulsions of nanometer titanium dioxide-silver particles-water-borne polyurethane. Textile Research Journal, 80(4), 291–300. doi:10.1177/0040517508100626
  • Cheng, Q.-Y., Guan, C.-S., Wang, M., Li, Y.-D., & Zeng, J.-B. (2018). Cellulose nanocrystal coated cotton fabric with superhydrophobicity for efficient oil/water separation. Carbohydrate Polymers, 199, 390–396. doi:10.1016/j.carbpol.2018.07.046
  • Cherenack, K., & van Pieterson, L. (2012). Smart textiles: Challenges and opportunities. Journal of Applied Physics, 112(9), 091301. doi:10.1063/1.4742728
  • Conductive Composites. (2011). Nanostrands. Retrieved from http://www.conductivecomposites.com/nanostrands.html
  • Dabrowski, F., Le Bras, M., Delobel, R., Gilman, J. W., & Kashiwagi, T. (2003). Using clay in PA-based intumescent formulations. Fire performance and kinetic parameters. Macromolecular Symposia, 194(1), 201–206. doi:10.1002/masy.200390083
  • Das, B., Das, A., Kothari, V., Fanguiero, R., & Araujo, M. (2007). Moisture transmission through textiles. Part I: Processes involved in moisture transmission and the factors at play, AUTEX Research Journal, 7(2), 100–110.
  • Dastjerdi, R., & Montazer, M. (2010). A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties. Colloids and Surfaces B: Biointerfaces, 79(1), 5–18. doi:10.1016/j.colsurfb.2010.03.029
  • Dastjerdi, R., Mojtahedi, M. R. M., Shoshtari, A. M., & Khosroshahi, A. (2010). Investigating the production and properties of Ag/TiO2/PP antibacterial nanocomposite filament yarns. Journal of the Textile Institute, 101(3), 204–213. doi:10.1080/00405000802346388
  • Devaux, E., Aubry, C., Campagne, C., & Rocher, M. (2011). PLA/carbon nanotubes multifilament yarns for relative humidity textile sensor. Journal of Engineered Fibers and Fabrics, 6(3), 155892501100600–155892501100624. doi:10.1177/155892501100600302
  • DOE/ARPA-E. (2013). Personal thermal management systems to reduce building energy consumption (Request for Information (RFI) No. # DE-FOA-0000938). Retrieved from https://arpa-e.energy.gov/?q=events/personal-thermal-management-reduce-building-energy-consumption-workshop.
  • Dufresne, A. (2013). Nanocellulose: A new ageless bionanomaterial. Materials Today, 16(6), 220–227. doi:10.1016/j.mattod.2013.06.004
  • Eichhorn, S. J. (2011). Cellulose nanowhiskers: Promising materials for advanced applications. Soft Matter, 7(2), 303–315. doi:10.1039/C0SM00142B
  • Ellison, C. J., Phatak, A., Giles, D. W., Macosko, C. W., & Bates, F. S. (2007). Melt blown nanofibers: Fiber diameter distributions and onset of fiber breakup. Polymer, 48(11), 3306–3316. doi:10.1016/j.polymer.2007.04.005
  • Elmoubarki, R., Mahjoubi, F. Z., Elhalil, A., Tounsadi, H., Abdennouri, M., Sadiq, M., … Barka, N. (2017). Ni/Fe and Mg/Fe layered double hydroxides and their calcined derivatives: Preparation, characterization and application on textile dyes removal. Journal of Materials Research and Technology, 6(3), 271–283. doi:10.1016/j.jmrt.2016.09.007
  • Faccini, M., Vaquero, C., & Amantia, D. (2012). Development of protective clothing against nanoparticle based on electrospun nanofibers. Journal of Nanomaterials, 2012, 892894–892899. doi:10.1155/2012/892894
  • Fathi-Azarbayjani, A., Qun, L., Chan, Y. W., & Chan, S. Y. (2010). Novel vitamin and gold-loaded nanofiber facial mask for topical delivery. AAPS Pharmscitech, 11(3), 1164–1170. doi:10.1208/s12249-010-9475-z
  • Gao, Y., & Cranston, R. (2008). Recent advances in antimicrobial treatments of textiles. Textile Research Journal, 78(1), 60–72. doi:10.1177/0040517507082332
  • Gashti, M. P., & Almasian, A. (2013). UV radiation induced flame retardant cellulose fiber by using polyvinylphosphonic acid/carbon nanotube composite coating. Composites Part B: Engineering, 45(1), 282–289. doi:10.1016/j.compositesb.2012.07.052
  • Gashti, M. P., Pakdel, E., & Alimohammadi, F. (2016). 11 - Nanotechnology-based coating techniques for smart textiles. In J. Hu (Ed.), Active coatings for smart textiles (pp. 243–268), Sawston, UK: Woodhead Publishing.
  • Geng, X., Kwon, O.-H., & Jang, J. (2005). Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials, 26(27), 5427–5432. doi:10.1016/j.biomaterials.2005.01.066
  • Gerber, L. C., Mohn, D., Fortunato, G., Astasov-Frauenhoffer, M., Imfeld, T., Waltimo, T., … Stark, W. J. (2011). Incorporation of reactive silver-tricalcium phosphate nanoparticles into polyamide 6 allows preparation of self-disinfecting fibers. Polymer Engineering & Science, 51(1), 71–77. doi:10.1002/pen.21779
  • Gopal, R., Kaur, S., Ma, Z., Chan, C., Ramakrishna, S., & Matsuura, T. (2006). Electrospun nanofibrous filtration membrane. Journal of Membrane Science, 281(1–2), 581–586. doi:10.1016/j.memsci.2006.04.026
  • Gu, J., Gu, H., Zhang, Q., Zhao, Y., Li, N., & Xiong, J. (2018). Sandwich-structured composite fibrous membranes with tunable porous structure for waterproof, breathable, and oil-water separation applications. Journal of Colloid and Interface Science, 514, 386–395. doi:10.1016/j.jcis.2017.12.032
  • Guo, R. H., Jiang, S. X., Yuen, C. W. M., Ng, M. C. F., & Lan, J. W. (2013). Optimization of electroless nickel plating on polyester fabric. Fibers and Polymers, 14(3), 459–464. doi:10.1007/s12221-013-0459-y
  • Habibi, Y., Goffin, A.-L., Schiltz, N., Duquesne, E., Dubois, P., & Dufresne, A. (2008). Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. Journal of Materials Chemistry, 18(41), 5002–5010. doi:10.1039/b809212e
  • Hale, W. R., Dohrer, K. K., Tant, M. R., & Sand, I. D. (2001). A diffusion model for water vapor transmission through microporous polyethylene/CaCo3 films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 187–188, 483–491. doi:10.1016/S0927-7757(01)00623-9
  • Hammami, M. A., Krifa, M., & Harzallah, O. (2014). Centrifugal force spinning of PA6 nanofibers – processability and morphology of solution-spun fibers. The Journal of the Textile Institute, 105(6), 637–647. doi:10.1080/00405000.2013.842680
  • Harifi, T., & Montazer, M. (2015). A review on textile sonoprocessing: A special focus on sonosynthesis of nanomaterials on textile substrates. Ultrasonics Sonochemistry, 23, 1–10. doi:10.1016/j.ultsonch.2014.08.022
  • Hayden, D. R., Imhof, A., & Velikov, K. P. (2016). Biobased nanoparticles for broadband UV protection with photostabilized UV filters. ACS Applied Materials & Interfaces, 8(48), 32655–32660. doi:10.1021/acsami.6b12933
  • Hayden, D. R., Kibbelaar, H. V. M., Imhof, A., & Velikov, K. P. (2018). Fully-biobased UV-absorbing nanoparticles from ethyl cellulose and zein for environmentally friendly photoprotection. RSC Advances, 8(44), 25104–25111. doi:10.1039/C8RA02674B
  • Hebeish, A., Sharaf, S., & Farouk, A. (2013). Utilization of chitosan nanoparticles as a green finish in multifunctionalization of cotton textile. International Journal of Biological Macromolecules, 60, 10–17. doi:10.1016/j.ijbiomac.2013.04.078
  • Hooshmand, S., Soroudi, A., & Skrifvars, M. (2011). Electro-conductive composite fibers by melt spinning of polypropylene/polyamide/carbon nanotubes. Synthetic Metals, 161(15-16), 1731–1737. doi:10.1016/j.synthmet.2011.06.014
  • Houshyar, S., Nayak, R., Padhye, R., & Shanks, R. A. (2019). Fabrication and characterization of nanodiamond coated cotton fabric for improved functionality. Cellulose, 26(9), 5797–5806. doi:10.1007/s10570-019-02479-w
  • Houshyar, S., Padhye, R., Shanks, R. A., & Nayak, R. (2019). Nanodiamond fabrication of superhydrophilic wool fabrics. Langmuir, 35(22), 7105–7111. doi:10.1021/acs.langmuir.8b02191
  • Hoyt, T., Lee, K. H., Zhang, H., Arens, E., & Webster, T. (2009, August 2–7). Energy savings from extended air temperature setpoints and reduction in room air mixing. In International Conference on Environmental Ergonomics, Boston, MA.
  • Huang, J., Wang, S., Lyu, S., & Fu, F. (2018). Preparation of a robust cellulose nanocrystal superhydrophobic coating for self-cleaning and oil-water separation only by spraying. Industrial Crops and Products, 122, 438–447. doi:10.1016/j.indcrop.2018.06.015
  • Huang, Y., Onyeri, S., Siewe, M., Moshfeghian, A., & Madihally, S. V. (2005). In vitro characterization of chitosan–gelatin scaffolds for tissue engineering. Biomaterials, 26(36), 7616–7627. doi:10.1016/j.biomaterials.2005.05.036
  • Huang, Z.-M., Zhang, Y.-Z., Kotaki, M., & Ramakrishna, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 63(15), 2223–2253. doi:10.1016/S0266-3538(03)00178-7
  • Ignatova, M., Manolova, N., & Rashkov, I. (2013). Electrospun antibacterial chitosan-based fibers. Macromol Biosci, 13, 860–872. doi:10.1002/mabi.201300058
  • Iijima, S. (2002). Carbon nanotubes: Past, present, and future. Physica B: Condensed Matter, 323(1-4), 1–5. doi:10.1016/S0921-4526(02)00869-4
  • Jafary, R., Khajeh Mehrizi, M., Hekmatimoghaddam, S., & Jebali, A. (2015). Antibacterial property of cellulose fabric finished by allicin-conjugated nanocellulose. The Journal of the Textile Institute, 106(7), 683–689. doi:10.1080/00405000.2014.954780
  • Jasiorski, M., Leszkiewicz, A., Brzeziński, S., Bugla-Płoskońska, G., Malinowska, G., Borak, B., … Doroszkiewicz, W. (2009). Textile with silver silica spheres: Its antimicrobial activity against Escherichia coli and Staphylococcus aureus. Journal of Sol-Gel Science and Technology, 51(3), 330–334. doi:10.1007/s10971-009-1902-9
  • Jirsak, O., Sanetrnik, F., Lukas, D., Martlnova, L., & Chaloupek, J. (2009). United States Patent.
  • Joshi, M., Bhattacharyya, A., Agarwal, N., & Parmar, S. (2012). Nanostructured coatings for super hydrophobic textiles. Bulletin of Materials Science, 35(6), 933–938. doi:10.1007/s12034-012-0391-6
  • Kang, S., Pinault, M., Pfefferle, L. D., & Elimelech, M. (2007). Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir, 23(17), 8670–8673. doi:10.1021/la701067r
  • Kang, X., Kuga, S., Wang, C., Zhao, Y., Wu, M., & Huang, Y. (2018). Green preparation of cellulose nanocrystal and its application. ACS Sustainable Chemistry & Engineering, 6(3), 2954–2960. doi:10.1021/acssuschemeng.7b02363
  • Kang, Y., Park, C., Kim, J., & Kang, T. (2007). Application of electrospun polyurethane web to breathable water-proof fabrics. Fibers and Polymers, 8(5), 564–570. doi:10.1007/BF02875881
  • Kashiwagi, T., Grulke, E., Hilding, J., Groth, K., Harris, R., Butler, K., … Douglas, J. (2004). Thermal and flammability properties of polypropylene/carbon nanotube nanocomposite. Polymer, 45(12), 4227–4239. doi:10.1016/j.polymer.2004.03.088
  • Kashiwagi, T., Grulke, E., Hilding, J., Harris, R., Awad, W., & Douglas, J. (2002). Thermal degradation and flammability properties of poly(propylene)/carbon nanotube composites. Macromolecular Rapid Communications, 23(13), 761–765. doi:10.1002/1521-3927(20020901)23:13<761::AID-MARC761>3.0.CO;2-K
  • Katti, D. S., Robinson, K. W., Ko, F. K., & Laurencin, C. T. (2004). Bioresorbable nanofiber‐based systems for wound healing and drug delivery: Optimization of fabrication parameters. Journal of Biomedical Materials Research Part Research, 70(2), 286–296. doi:10.1002/jbm.b.30041
  • Kim, H.-Y., Park, S. S., & Lim, S.-T. (2015). Preparation, characterization and utilization of starch nanoparticles. Colloids and Surfaces B: Biointerfaces, 126, 607–620. doi:10.1016/j.colsurfb.2014.11.011
  • Kim, J.-H., Shim, B. S., Kim, H. S., Lee, Y.-J., Min, S.-K., Jang, D., … Kim, J. (2015). Review of nanocellulose for sustainable future materials. International Journal of Precision Engineering and Manufacturing-Green Technology, 2(2), 197–213. doi:10.1007/s40684-015-0024-9
  • Ko, F., Gogotsi, Y., Ali, A., Naguib, N., Ye, H., Yang, G. L., … Willis, P. (2003). Electrospinning of continuous carbon nanotube-filled nanofiber yarns. Advanced Materials, 15(14), 1161–1165. doi:10.1002/adma.200304955
  • Kohls, E. C., Abler, A., Siemsen, P., Hughes, J., Perez, R., & Widdoes, D. (2004, June 20–25). A multi-band body-worn antenna vest. In Antennas and Propagation Society International Symposium, IEEE.
  • Krifa, M., & Yuan, W. (2016). Morphology and pore size distribution of electrospun and centrifugal forcespun nylon 6 nanofiber membranes. Textile Research Journal, 86(12), 1294–1306. doi:10.1177/0040517515609258
  • Krifa, M., Hammami, M. A., & Wu, H. (2015). Occurrence and morphology of bead-on-string structures in centrifugal forcespun PA6 fibers. The Journal of the Textile Institute, 106(3), 284–294. doi:10.1080/00405000.2014.917812
  • Kuhnt, T., Herrmann, A., Benczédi, D., Foster, E. J., & Weder, C. (2015). Functionalized cellulose nanocrystals as nanocarriers for sustained fragrance release. Polymer Chemistry, 6(36), 6553–6562. doi:10.1039/C5PY00944H
  • Lam, Y., Kan, C., & Yuen, C. (2011). Wrinkle-resistant finishing of cotton fabric with BTCA - the effect of co-catalyst. Textile Research Journal, 81(5), 482–493. doi:10.1177/0040517510380777
  • Laufer, G., Kirkland, C., Cain, A. A., & Grunlan, J. C. (2012). Clay–chitosan nanobrick walls: Completely renewable gas barrier and flame-retardant nanocoatings. ACS Applied Materials & Interfaces, 4(3), 1643–1649. doi:10.1021/am2017915
  • Le Corre, D., Bras, J., & Dufresne, A. (2010). Starch nanoparticles: A review. Biomacromolecules, 11(5), 1139–1153. doi:10.1021/bm901428y
  • Lee, S., & Obendorf, S. K. (2007). Use of electrospun nanofiber web for protective textile materials as barriers to liquid penetration. Textile Research Journal, 77(9), 696–702. doi:10.1177/0040517507080284
  • Lee, T.-W., Han, M., Lee, S.-E., & Jeong, Y. G. (2016). Electrically conductive and strong cellulose-based composite fibers reinforced with multiwalled carbon nanotube containing multiple hydrogen bonding moiety. Composites Science and Technology, 123, 57–64. doi:10.1016/j.compscitech.2015.12.006
  • Li, Y., Zou, C., Shao, J., Zhang, X., & Li, Y. N. (2017). Preparation of SiO2/PS superhydrophobic fibers with bionic controllable micro-nano structure via centrifugal spinning. RSC Advances, 7(18), 11041–11048. doi:10.1039/C6RA25813A
  • Liao, S., Chan, C., & Ramakrishna, S. (2010). Electrospun nanofibers: Work for medicine? Frontiers of Materials Science in China, 4(1), 29–33. doi:10.1007/s11706-010-0009-0
  • Lim, S.-H., & Hudson, S. M. (2003). Review of chitosan and its derivatives as antimicrobial agents and their uses as textile chemicals. Journal of Macromolecular Science, Part C, 43(2), 223–269. doi:10.1081/MC-120020161
  • Lima, M. D., Fang, S., Lepro, X., Lewis, C., Ovalle-Robles, R., Carretero-Gonzalez, J., … Baughman, R. H. (2011). Biscrolling nanotube sheets and functional guests into yarns. Science, 331(6013), 51–55. doi:10.1126/science.1195912
  • Liu, J., Xie, F., Zhou, Y., Zou, Q., & Wu, J. (2013, December 16–18). A wearable health monitoring system with multi-parameters. In 6th International Conference on Biomedical Engineering and Informatics.
  • Liu, X., Ge, L., Li, W., Wang, X., & Li, F. (2015). Layered double hydroxide functionalized textile for effective oil/water separation and selective oil adsorption. ACS Applied Materials & Interfaces, 7(1), 791–800. doi:10.1021/am507238y
  • Liu, Y., Tang, J., Wang, R., Lu, H., Li, L., Kong, Y., … Xin, J. H. (2007). Artificial lotus leaf structures from assembling carbon nanotubes and their applications in hydrophobic textiles. Journal of Materials Chemistry, 17(11), 1071–1078. doi:10.1039/B613914K
  • Liu, Y., Wang, X., Qi, K., & Xin, J. H. (2008). Functionalization of cotton with carbon nanotubes. Journal of Materials Chemistry, 18(29), 3454–3460. doi:10.1039/b801849a
  • Lozano, K., & Sarkar, K. ( (2009). ). USA Patent No. US 2009/0280325 A1. United States Patent and Trademark Office.
  • Lu, C., Krifa, M., & Koo, J. H. (2013, May 6–9). Conductive Poly (3,4 ethylenedioxythio-phene): poly(4-styrene sulfonate) (PEDOT:PSS)/nickel nanostrands nanocomposites. In SAMPE 2013, Long Beach, CA.
  • Lu, H., Chen, J., & Tian, Q. (2018). Wearable high-performance supercapacitors based on Ni-coated cotton textile with low-crystalline Ni-Al layered double hydroxide nanoparticles. Journal of Colloid and Interface Science, 513, 342–348. doi:10.1016/j.jcis.2017.11.046
  • Ma, P. X., & Zhang, R. (1999). Synthetic nano-scale fibrous extracellular matrix. Journal of Biomedical Materials Research, 46(1), 60–72. doi:10.1002/(SICI)1097-4636(199907)46:1 < 60::AID-JBM7 > 3.0.CO;2-H
  • Maryan, A. S., & Montazer, M. (2015). Natural and organo-montmorillonite as antibacterial nanoclays for cotton garment. Journal of Industrial and Engineering Chemistry, 22, 164–170. doi:10.1016/j.jiec.2014.07.005
  • Matthews, J. A., Wnek, G. E., Simpson, D. G., & Bowlin, G. L. (2002). Electrospinning of collagen nanofibers. Biomacromolecules, 3(2), 232–238. doi:10.1021/bm015533u
  • McEachin, Z., & Lozano, K. (2012). Production and characterization of polycaprolactone nanofibers via forcespinning™ technology. Journal of Applied Polymer Science, 126(2), 473–479. doi:10.1002/app.36843
  • Mirzaei, H., & Darroudi, M. (2017). Zinc oxide nanoparticles: Biological synthesis and biomedical applications. Ceramics International, 43(1), 907–914. doi:10.1016/j.ceramint.2016.10.051
  • Moazzenchi, B., & Montazer, M. (2019). Click electroless plating of nickel nanoparticles on polyester fabric: Electrical conductivity, magnetic and EMI shielding properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 571, 110–124. doi:10.1016/j.colsurfa.2019.03.065
  • Mochalin, V. N., & Gogotsi, Y. (2015). Nanodiamond–polymer composites. Diamond and Related Materials, 58, 161–171. doi:10.1016/j.diamond.2015.07.003
  • Mochalin, V. N., Shenderova, O., Ho, D., & Gogotsi, Y. (2012). The properties and applications of nanodiamonds. Nature Nanotechnology, 7(1), 11–23. doi:10.1038/nnano.2011.209
  • Montazer, M., & Pakdel, E. (2011). Functionality of nano titanium dioxide on textiles with future aspects: Focus on wool. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 12(4), 293–303. doi:10.1016/j.jphotochemrev.2011.08.005
  • Montazer, M., & Seifollahzadeh, S. (2011). Enhanced self-cleaning, antibacterial and UV protection properties of nano TiO 2 treated textile through enzymatic pretreatment. Photochem Photobiol, 87, 877–883. doi:10.1111/j.1751-1097.2011.00917.x
  • Moon, R. J., Martini, A., Nairn, J., Simonsen, J., & Youngblood, J. (2011). Cellulose nanomaterials review: Structure, properties and nanocomposites. Chemical Society Reviews, 40(7), 3941–3994. doi:10.1039/c0cs00108b
  • Murugan, R., & Ramakrishna, S. (2006). Nano-featured scaffolds for tissue engineering: A review of spinning methodologies. Tissue Engineering, 12(3), 435–447. doi:10.1089/ten.2006.12.435
  • Muzzarelli, R. A. A., Mehtedi, M., & Mattioli-Belmonte, M. (2014). Emerging biomedical applications of nano-chitins and nano-chitosans obtained via advanced eco-friendly technologies from marine resources. Marine Drugs, 12, 5468–5502. doi:10.3390/md12115468
  • Nagaraju, G., Raju, G. S. R., Ko, Y. H., & Yu, J. S. (2016). Hierarchical Ni–Co layered double hydroxide nanosheets entrapped on conductive textile fibers: A cost-effective and flexible electrode for high-performance pseudocapacitors. Nanoscale, 8(2), 812–825. doi:10.1039/C5NR05643H
  • Naseri, N., Algan, C., Jacobs, V., John, M., Oksman, K., & Mathew, A. P. (2014). Electrospun chitosan-based nanocomposite mats reinforced with chitin nanocrystals for wound dressing. Carbohydrate Polymers, 109(0), 7–15. doi:10.1016/j.carbpol.2014.03.031
  • National Nanotechnology Initiative. (2018). Nanotechnology: Big things from a tiny world. Retrieved from http://www.nano.gov/node/240
  • Nepal, D., Balasubramanian, S., Simonian, A. L., & Davis, V. A. (2008). Strong antimicrobial coatings: single-walled carbon nanotubes armored with biopolymers. Nano Letters, 8(7), 1896–1901. doi:10.1021/nl080522t
  • Norouzi, M., Zare, Y., & Kiany, P. (2015). Nanoparticles as effective flame retardants for natural and synthetic textile polymers: Application, mechanism, and optimization. Polymer Reviews, 55(3), 530–531. doi:10.1080/183724.2014.980427
  • Ohkawa, K., Cha, D., Kim, H., Nishida, A., & Yamamoto, H. (2004). Electrospinning of Chitosan. Macromolecular Rapid Communications, 25(18), 1600–1605. doi:10.1002/marc.200400253
  • Padron, S. (2012). 2D modeling of forcespinning (TM) nanofiber formation with experimental study and validation (MS M.S.). Edinburg: University of Texas-Pan American.
  • Padron, S., Caruntu, D. I., & Lozano, K. (2011, November 11–17). On 2D forcespinning™ modeling. In ASME 2011 International Mechanical Engineering Congress & Exposit, Denver, CO. doi:10.1115/IMECE2011-64823
  • Paget, V., Sergent, J. A., Grall, R., Altmeyer-Morel, S., Girard, H. A., Petit, T., … Chevillard, S. (2014). Carboxylated nanodiamonds are neither cytotoxic nor genotoxic on liver, kidney, intestine and lung human cell lines. Nanotoxicology, 8(sup1), 46–56. doi:10.3109/17435390.2013.855828
  • Pakdel, E., Daoud, W. A., Afrin, T., Sun, L., & Wang, X. (2015). Self-cleaning wool: Effect of noble metals and silica on visible-light-induced functionalities of nano TiO2 colloid. The Journal of the Textile Institute, 106(12), 1348–1361. doi:10.1080/00405000.2014.995461
  • Pakdel, E., Daoud, W. A., Afrin, T., Sun, L., & Wang, X. (2017). Enhanced antimicrobial coating on cotton and its impact on UV protection and physical characteristics. Cellulose, 24(9), 4003–4015. doi:10.1007/s10570-017-1374-y
  • Pakdel, E., Daoud, W. A., Sun, L., & Wang, X. (2014). Visible and UV functionality of TiO2 ternary nanocomposites on cotton. Applied Surface Science, 321, 447–456. doi:10.1016/j.apsusc.2014.10.018
  • Pakdel, E., Naebe, M., Sun, L., & Wang, X. (2019). Advanced functional fibrous materials for enhanced thermoregulating performance. ACS Applied Materials & Interfaces, 11(14), 13039–13057. doi:10.1021/acsami.8b19067
  • Panwar, K., Jassal, M., & Agrawal, A. K. (2018). TiO2–SiO2 Janus particles for photocatalytic self-cleaning of cotton fabric. Cellulose, 25(4), 2711–2720. doi:10.1007/s10570-018-1698-2
  • Park, J. H., Lee, H. W., Chae, D. K., Oh, W., Yun, J. D., Deng, Y., & Yeum, J. H. (2009). Electrospinning and characterization of poly(vinyl alcohol)/chitosan oligosaccharide/clay nanocomposite nanofibers in aqueous solutions. Colloid and Polymer Science, 287(8), 943–950. doi:10.1007/s00396-009-2050-z
  • Paul, D. R., & Robeson, L. M. (2008). Polymer nanotechnology: Nanocomposites. Polymer, 49(15), 3187–3204. doi:10.1016/j.polymer.2008.04.017
  • Penalva, R., Esparza, I., Agüeros, M., Gonzalez-Navarro, C. J., Gonzalez-Ferrero, C., & Irache, J. M. (2015). Casein nanoparticles as carriers for the oral delivery of folic acid. Food Hydrocolloids, 44, 399–406. doi:10.1016/j.foodhyd.2014.10.004
  • Petrik, S., & Maly, M. (2009). Production nozzle-less electrospinning nanofiber technology. MRS Proceedings, 1240, WW1203–1207. doi:10.1557/PROC-1240-WW03-07
  • Ploehn, H. J., & Liu, C. (2006). Quantitative analysis of montmorillonite platelet size by atomic force microscopy. Industrial & Engineering Chemistry Research, 45(21), 7025–7034. doi:10.1021/ie051392r
  • Qi, K., Wang, X., & Xin, J. H. (2011). Photocatalytic self-cleaning textiles based on nanocrystalline titanium dioxide. Textile Research Journal, 81(1), 101–110. doi:10.1177/0040517510383618
  • Ra, E. J., An, K. H., Kim, K. K., Jeong, S. Y., & Lee, Y. H. (2005). Anisotropic electrical conductivity of MWCNT/PAN nanofiber paper. Chemical Physics Letters, 413(1–3), 188–193. doi:10.1016/j.cplett.2005.07.061
  • Ramakrishna, S. (2005). An introduction to electrospinning and nanofibers. Hackensack, NJ: World Scientific.
  • Ramakrishna, S., Fujihara, K., Teo, W.-E., Yong, T., Ma, Z., & Ramaseshan, R. (2006). Electrospun nanofibers: Solving global issues. Materials Today, 9(3), 40–50. doi:10.1016/S1369-7021(06)71389-X
  • Reilly, R. M. (2007). Carbon nanotubes: Potential benefits and risks of nanotechnology in nuclear medicine. Journal of Nuclear Medicine, 48(7), 1039–1042. doi:10.2967/jnumed.107.041723
  • Roe, B., Kotek, R., & Zhang, X. (2012). Durable hydrophobic cotton surfaces prepared using silica nanoparticles and multifunctional silanes. Journal of the Textile Institute, 103(4), 385–393. doi:10.1080/00405000.2011.580540
  • Sarkar, K., Gomez, C., Zambrano, S., Ramirez, M., de Hoyos, E., Vasquez, H., & Lozano, K. (2010). Electrospinning to Forcespinning™. Materials Today, 13(11), 12–14. doi:10.1016/S1369-7021(10)70199-1
  • Schartel, B., Pötschke, P., Knoll, U., & Abdel-Goad, M. (2005). Fire behaviour of polyamide 6/multiwall carbon nanotube nanocomposites. European Polymer Journal, 41(5), 1061–1070. doi:10.1016/j.eurpolymj.2004.11.023
  • Schiffman, J. D., & Elimelech, M. (2011). Antibacterial activity of electrospun polymer mats with incorporated narrow diameter single-walled carbon nanotubes. ACS Applied Materials & Interfaces, 3(2), 462–468. doi:10.1021/am101043y
  • Schreuder-Gibson, H. L., Truong, Q., Walker, J. E., Owens, J. R., Wander, J. D., & Jones, W. E. (2003). Chemical and biological protection and detection in fabrics for protective clothing. MRS Bulletin, 28(8), 574–578. doi:10.1557/mrs2003.168
  • Shastri, J. P., Rupani, M. G., & Jain, R. L. (2012). Antimicrobial activity of nanosilver-coated socks fabrics against foot pathogens. Journal of the Textile Institute, 103, 1234–1243. doi:10.1080/00405000.2012.675680
  • Shaw, R. K., Long, B. R., Werner, D. H., & Gavrin, A. (2007). The characterization of conductive textile materials intended for radio frequency applications. IEEE Antennas and Propagation Magazine, 49(3), 28–40. doi:10.1109/MAP.2007.4293934
  • Sheng, J., Li, Y., Wang, X., Si, Y., Yu, J., & Ding, B. (2016). Thermal inter-fiber adhesion of the polyacrylonitrile/fluorinated polyurethane nanofibrous membranes with enhanced waterproof-breathable performance. Separation and Purification Technology, 158, 53–61. doi:10.1016/j.seppur.2015.11.046
  • Shim, B. S., Chen, W., Doty, C., Xu, C., & Kotov, N. A. (2008). Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes. Nano Letters, 8(12), 4151–4157. doi:10.1021/nl801495p
  • Smijs, T., & Pavel, S. (2015). Chapter 2.8 - A case study: nano-sized titanium dioxide in sunscreens a2 - dolez. In Patricia I Nanoengineering (pp. 375–423). Amsterdam: Elsevier.
  • Sumin, L., Kimura, D., Yokoyama, A., Lee, K., Park, J. C., & Kim, I. (2009). The effects of laundering on the mechanical properties of mass-produced nanofiber web for use in wear. Textile Research Journal, 79(12), 1085–1090. doi:10.1177/0040517508101622
  • Tamburri, E., Guglielmotti, V., Orlanducci, S., Terranova, M. L., Sordi, D., Passeri, D., … Rossi, M. (2012). Nanodiamond-mediated crystallization in fibers of PANI nanocomposites produced by template-free polymerization: Conductive and thermal properties of the fibrillar networks. Polymer, 53(19), 4045–4053. doi:10.1016/j.polymer.2012.07.014
  • Tang, C.-H. (2019). Nanostructured soy proteins: Fabrication and applications as delivery systems for bioactives (a review). Food Hydrocolloids, 91, 92–116. doi:10.1016/j.foodhyd.2019.01.012
  • Teng, Z., Luo, Y., & Wang, Q. (2012). Nanoparticles synthesized from soy protein: preparation, characterization, and application for nutraceutical encapsulation. Journal of Agricultural and Food Chemistry, 60(10), 2712–2720. doi:10.1021/jf205238x
  • Tomaszewski, W., & Szadkowski, M. (2005). Investigation of electrospinning with the use of a multi-jet electrospinning head. Fibres & Textiles in Eastern Europe, 13(4), 22–26.
  • Tulve, N. S., Stefaniak, A. B., Vance, M. E., Rogers, K., Mwilu, S., LeBouf, R. F., … Marr, L. C. (2015). Characterization of silver nanoparticles in selected consumer products and its relevance for predicting children’s potential exposures. International Journal of Hygiene and Environmental Health, 218(3), 345–357. doi:10.1016/j.ijheh.2015.02.002
  • Tung, W. S., & Daoud, W. A. (2011). Self-cleaning fibers via nanotechnology: A virtual reality. Journal of Materials Chemistry, 21(22), 7858–7869. doi:10.1039/c0jm03856c
  • Vollath, D. (2013). Nanoparticles - nanocomposites nanomaterials: An introduction for beginners. Weinheim, Germany: Wiley-VCH.
  • Wang, J., Jákli, A., Guan, Y., Fu, S., & West, J. (2017). Developing liquid-crystal functionalized fabrics for wearable sensors. Information Display, 33(4), 16–20. doi:10.1002/j.2637-496X.2017.tb01010.x
  • Wang, J., Kolacz, J., Chen, Y., Jákli, A., Kawalec, J., Benitez, M., & West, J. L. (2017). Smart fabrics functionalized by liquid crystals. SID Symposium Digest of Technical Papers, 48(1), 147–149. doi:10.1002/sdtp.11597
  • Werfel, T., Heratizadeh, A., Aberer, W., Ahrens, F., Augustin, M., Biedermann, T., … Worm, M. (2016). S2k guideline on diagnosis and treatment of atopic dermatitis – short version. JDDG: Journal Der Deutschen Dermatologischen Gesellschaft, 14(1), 92–105. doi:10.1111/ddg.12871
  • West, J. L., Wang, J. R., & Jákli, A. (2016). Airbrushed liquid crystal/polymer fibers for responsive textiles. Advances in Science and Technology, 100(1), 43–49. doi:10.4028/www.scientific.net/AST.100.43
  • Wu, H., & Krifa, M. (2011). Superhydrophobic Nylon 6 Nanocomposite Fibers. Paper Presented at the Material Research Society Fall Meeting, Boston, MA.
  • Wu, H., Krifa, M., & Koo, J. H. (2014). Flame retardant polyamide 6/nanoclay/intumescent nanocomposite fibers through electrospinning. Textile Research Journal, 84(10), 1106–1118. doi:10.1177/0040517513515314
  • Wu, H., Krifa, M., & Koo, J. H. (2018a). Inherently flame retardant nylon 6 nanocomposite fibers. Fibers and Polymers, 19(7), 1500–1512. doi:10.1007/s12221-018-7448-0
  • Wu, H., Krifa, M., & Koo, J. H. (2018b). Rubber (SEBS-g-MA) toughened flame-retardant polyamide 6: Microstructure, combustion, extension, and izod impact behavior. Polymer-Plastics Technology and Engineering, 57(8), 727–739. doi:10.1080/03602559.2017.1344856
  • Wu, H., Ortiz, R., Correa, R. de. A., Krifa, M., & Koo Joseph, H. (2018a). Self-extinguishing and non-drip flame retardant polyamide 6 nanocomposite: Mechanical, thermal, and combustion behavior. Flame Retardancy and Thermal Stability of Materials, 1(1), 1–13. doi:10.1515/flret-2018-0001
  • Wu, Y., Chen, C., Jia, Y., Wu, J., Huang, Y., & Wang, L. (2018b). Review on electrospun ultrafine phase change fibers (PCFs) for thermal energy storage. Applied Energy, 210, 167–181. doi:10.1016/j.apenergy.2017.11.001
  • Xu, H., Chen, H., Li, X., Liu, C., & Yang, B. (2014). A comparative study of jet formation in nozzle- and nozzle-less centrifugal spinning systems. Journal of Polymer Science Part B: Polymer Physics, 52(23), 1547–1559. doi:10.1002/polb.23596
  • Yamanaka, M., Hara, K., & Kudo, J. (2005). Bactericidal actions of a silver ion solution on escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Applied and Environmental Microbiology, 71(11), 7589–7593. doi:10.1128/AEM.71.11.7589-7593.2005
  • Yang, Y., Jia, Z., Li, Q., Hou, L., Liu, J., Wang, L., … Zahn, M. (2010). A shield ring enhanced equilateral hexagon distributed multi-needle electrospinning spinneret. Ieee Transactions on Dielectrics and Electrical Insulation, 17(5), 1592–1601. doi:10.1109/TDEI.2010.5595562
  • Yao, L., Wu, L., Wu, H., Koo Joseph, H., & Krifa, M. (2019). Design and characterization of flame resistant blended nondrip PA6/Lenzing FR®/PBI fiber nonwoven fabrics. Flame Retardancy and Thermal Stability of Materials, 2(1), 49–59. (Vol. doi:10.1515/flret-2019-0005
  • Yeom, B. Y., & Pourdeyhimi, B. (2011). Aerosol filtration properties of PA6/PE islands-in-the-sea bicomponent spunbond web fibrillated by high-pressure water jets. Journal of Materials Science, 46(17), 5761–5767. [ doi:10.1007/s10853-011-5531-7
  • Yin, X., Krifa, M., & Koo, J. H. (2015). Flame-retardant polyamide 6/carbon nanotube nanofibers: Processing and characterization. Journal of Engineered Fibers and Fabrics, 10(3), 155892501501000. doi:10.1177/155892501501000301
  • Yoon, B., & Lee, S. (2011). Designing waterproof breathable materials based on electrospun nanofibers and assessing the performance characteristics. Fibers and Polymers, 12(1), 57–64. doi:10.1007/s12221-011-0057-9
  • Yoshimoto, H., Shin, Y. M., Terai, H., & Vacanti, J. P. (2003). A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials, 24(12), 2077–2082. doi:10.1016/S0142-9612(02)00635-X
  • Yuehui, O., & Chappell, W. J. (2008). High frequency properties of electro-textiles for wearable antenna applications. Antennas and Propagation, IEEE Transactions on, 56(2), 381–389. doi:10.1109/TAP.2007.915435
  • Yuehui, O., Karayianni, E., & Chappell, W. J. (2005, July 3–8). Effect of fabric patterns on electrotextile patch antennas. In Antennas and Propagation Society International Symposium, 2005, IEEE.
  • Yuen, C. W. M., Ku, S. K. A., Li, Y., Cheng, Y. F., Kan, C. W., & Choi, P. S. R. (2009). Improvement of wrinkle-resistant treatment by nanotechnology. Journal of the Textile Institute, 100(2), 173–180. doi:10.1080/00405000701661028
  • Zhang, X., Yan, X., He, Q., Wei, H., Long, J., Guo, J., … Guo, Z. (2015). electrically conductive polypropylene nanocomposites with negative permittivity at low carbon nanotube loading levels. ACS Applied Materials & Interfaces, 7(11), 6125–6138. doi:10.1021/am5082183
  • Zhou, F.-L., Gong, R.-H., & Porat, I. (2009). Three-jet electrospinning using a flat spinneret. Journal of Materials Science, 44(20), 5501–5508. doi:10.1007/s10853-009-3768-1
  • Zhou, Z., Chu, L., Tang, W., & Gu, L. (2003). Studies on the antistatic mechanism of tetrapod-shaped zinc oxide whisker. Journal of Electrostatics, 57(3–4), 347–354. doi:10.1016/S0304-3886(02)00171-7
  • Zhu, X.-D., Zang, C.-G., & Jiao, Q.-J. (2014). High electrical conductivity of nylon 6 composites obtained with hybrid multiwalled carbon nanotube/carbon fiber fillers. Journal of Applied Polymer Science, 131(20), n/a–n/a. doi:10.1002/app.40923
  • Zoppe, J. O., Peresin, M. S., Habibi, Y., Venditti, R. A., & Rojas, O. J. (2009). Reinforcing poly(ε-caprolactone) nanofibers with cellulose nanocrystals. ACS Applied Materials & Interfaces, 1(9), 1996–2004. doi:10.1021/am9003705

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.