460
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Effect of microstructure on porosity of random fibrous networks

, , &
Pages 1713-1723 | Received 24 Jun 2019, Accepted 22 Jan 2020, Published online: 03 Feb 2020

References

  • Abdel-Ghani, M. S., & Davies, G. A. (1985). Simulation of non-woven fibre mats and the application to coalescers. Chemical Engineering Sciences, 40(1), 117–129. doi:10.1016/0009-2509(85)85052-1
  • Abishek, S., King, A. J. C., Mead-Hunter, R., Golkarfard, V., Heikamp, W., & Mullins, B. J. (2017). Generation and validation of virtual nonwoven, foam and knitted filter (separator/coalescer) geometries for CFD simulations. Separation and Purification Technology, 188, 493–507. doi:10.1016/j.seppur.2017.07.052
  • Anandjiwala, R. D., & Boguslavsky, L. (2008). Development of needle-punched nonwoven fabrics from flax fibers for air filtration applications. Textile Research Journal, 78(7), 614–624. doi:10.1177/0040517507081837
  • Corte, H., & Kallmes, O. J. (1960). Statistical geometry of a fibrous network. Tappi Journal, 43, 737–752.
  • Cox, H. L. (1952). The elasticity and strength of paper and other fibrous materials. British Journal of Applied Physics, 3(3), 72–79. doi:10.1088/0508-3443/3/3/302
  • Demirci, E., Acar, M., Pourdeyhimi, B., & Silberschmidt, V. V. (2012). Computation of mechanical anisotropy in thermally bonded bicomponent fibre nonwovens. Computational Materials Science, 52(1), 157–163. doi:10.1016/j.commatsci.2011.01.033
  • Eichhorn, S. J., & Sampson, W. W. (2005). Statistical geometry of pores and statistics of porous nanofibrous assemblies. Journal of the Royal Society Interface, 2(4), 309–318. doi:10.1098/rsif.2005.0039
  • Faure, Y. H., Gourc, J. P., & Gendrin, P. (1990). Structural study of porometry and filtration opening size of geotextiles. Geosynthetics: Microstructure and Performance, 1076, 102–119.
  • Fraley, S. I., Wu, P., He, L., Feng, Y., Krisnamurthy, R., Longmore, G. D., & Wirtz, D. (2015). Three-dimensional matrix fiber alignment modulates cell migration and MT1-MMP utility by spatially and temporally directing protrusions. Scientific Reports, 5, 14580. doi:10.1038/srep14580
  • Fratzl, P., & Weinkamer, R. (2007). Nature’s hierarchical materials. Progress in Materials Science, 52(8), 1263–1334. doi:10.1016/j.pmatsci.2007.06.001
  • Gao, X., Shi, Z., Liu, C., Yang, G., Sevostianov, I., & Silberschmidt, V. V. (2015). Inelastic behaviour of bacterial cellulose hydrogel: In aqua cyclic tests. Polymer Testing, 44, 82–92. doi:10.1016/j.polymertesting.2015.03.021
  • Gao, X., Sozumert, E., Shi, Z., Yang, G., & Silberschmidt, V. V. (2017). Assessing stiffness of nanofibres in bacterial cellulose hydrogels: Numerical–experimental framework. Materials Science and Engineering: C, 77, 9–18. doi:10.1016/j.msec.2017.03.231
  • Gopal, R., Kaur, S., Ma, Z., Chan, C., Ramakrishna, S., & Matsuura, T. (2006). Electrospun nanofibrous filtration membrane. Journal of Membrane Science, 281(1–2), 581–586. doi:10.1016/j.memsci.2006.04.026
  • Hou, X., Acar, M., & Silberschmidt, V. V. (2011). Non-uniformity of deformation in low-density thermally point bonded non-woven material: Effect of microstructure. Journal of Materials Science, 46(2), 307–315. doi:10.1007/s10853-010-4800-1
  • Kim, H. H., Kim, M. J., Ryu, S. J., Ki, C. S., & Park, Y. H. (2016). Effect of fiber diameter on surface morphology, mechanical property, and cell behavior of electrospun poly(ε-caprolactone) mat. Fibers and Polymers, 17(7), 1033–1042. doi:10.1007/s12221-016-6350-x
  • Kim, H. S., & Pourdeyhimi, B. (2000). A note on the effect of fiber diameter, fiber crimp and fiber orientation on pore size in thin webs. International Nonwovens Journal, 9, 15–19.
  • Kiyak, Y. (2016). Nonwovens as separation media in bioreactors. Raleigh: North Carolina State University.
  • Kiyak, Y., Mazé, B., & Pourdeyhimi, B. (2018). Microfiber nonwovens as potential membranes. Separation and Purification Reviews, 48, 1–16. doi:10.1080/15422119.2018.1479968
  • Kopitar, D., Skenderi, Z., & Rukavina, T. (2013). Influence of pressure on hydraulic properties of nonwoven geotextiles. Journal of Fiber Bioengineering and Informatics, 6(1), 103–115.
  • Kopitar, D., Skenderi, Z., & Rukavina, T. (2014). Impact of calendering process on nonwoven geotextiles hydraulic properties. Textile Research Journal, 84(1), 66–77. doi:10.1177/0040517513485627
  • Kumar, V., & Rawal, A. (2017). Elastic moduli of electrospun mats: Importance of fiber curvature and specimen dimensions. Journal of the Mechanical Behavior of Biomedical Materials, 72, 6–13. doi:10.1016/j.jmbbm.2017.04.013
  • Liang, Z., Liu, C., Li, L., Xu, P., Luo, G., Ding, M., & Liang, Q. (2016). Double-network hydrogel with tunable mechanical performance and biocompatibility for the fabrication of stem cells-encapsulated fibers and 3D assemble. Scientific Reports, 6, 33462. doi:10.1038/srep33462
  • Lombard, G., Rollin, A., & Wolff, C. (1989). Theoretical and experimental opening sizes of heat-bonded geotextiles. Textile Research Journal, 59(4), 208–217. doi:10.1177/004051758905900404
  • Lowery, J. L., Datta, N., & Rutledge, G. C. (2010). Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly(epsilon-caprolactone) fibrous mats. Biomaterials, 31(3), 491–504. doi:10.1016/j.biomaterials.2009.09.072
  • Manickam, S., & McCutcheon, J. R. (2012). Characterization of polymeric nonwovens using porosimetry, porometry and X-ray computed tomography. Journal of Membrane Science, 407–408, 108–115. doi:10.1016/j.memsci.2012.03.022
  • Michalski, B. (2009). The validation of test methods for defining structural characteristics of nonwovens for tissue engineering applications. Aachen: RWTH Aachen University.
  • Moghadam, A., Yousefi, S. H., Tafreshi, H. V., & Pourdeyhimi, B. (2019). Characterizing nonwoven materials via realistic microstructural modeling. Separation and Purification Technology, 211, 602–609. doi:10.1016/j.seppur.2018.10.018
  • Murphy, C. M., Haugh, M. G., & O'Brien, F. J. (2010). The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials, 31(3), 461–466. doi:10.1016/j.biomaterials.2009.09.063
  • Muthutantri, A., Huang, J., & Edirisinghe, M. (2008). Novel preparation of graded porous structures for medical engineering. Journal of the Royal Society Interface, 5(29), 1459–1467. doi:10.1098/rsif.2008.0092
  • Nakamura, K., Suda, T., & Matsumoto, K. (2018). Characterization of pore size distribution of non-woven fibrous filter by inscribed sphere within 3D filter model. Separation and Purification Technology, 197, 289–294. doi:10.1016/j.seppur.2018.01.012
  • Neckář, B., & Ibrahim, S. (2003). Theoretical approach for determining pore characteristics between fibers. Textile Research Journal, 73(7), 611–619. doi:10.1177/004051750307300709
  • Pai, C.-L., Boyce, M. C., & Rutledge, G. C. (2011). On the importance of fiber curvature to the elastic moduli of electrospun nonwoven fiber meshes. Polymer, 52(26), 6126–6133. doi:10.1016/j.polymer.2011.10.055
  • Pourdeyhimi, B., Dent, R., & Davis, H. (1997). Measuring fiber orientation in nonwovens part III: Fourier transform. Textile Research Journal, 67(2), 143–151. doi:10.1177/004051759706700211
  • Pourdeyhimi, B., & Kim, H. S. (2002). Measuring fiber orientation in nonwovens: The Hough transform. Textile Research Journal, 72(9), 803–809. doi:10.1177/004051750207200909
  • Rawal, A. (2006). A modified micromechanical model for the prediction of tensile behavior of nonwoven structures. Journal of Industrial Textiles, 36(2), 133–149. doi:10.1177/1528083706067691
  • Rawal, A., Rao, P. V. K., Russell, S., & Jeganathan, A. (2010). Effect of fiber orientation on pore size characteristics of nonwoven structures. Journal of Applied Polymer Science, 118(5), 2668–2673. doi:10.1002/app.32608
  • Russell, S. J. (2006). Handbook of nonwovens (1st ed.). England: Woodhead Publishing.
  • Sakthivel, S., Ezhil, A. J. J., & Ramachandran, T. (2014). Development of needle-punched nonwoven fabrics from reclaimed fibers for air filtration applications. Journal of Engineered Fibers and Fabrics, 9(1), 149–154. doi:10.1177/155892501400900117
  • Simmonds, G. E., Bomberger, J. D., Bryner, M. A., & Du, E. (2007). Designing nonwovens to meet pore size specifications. Journal of Engineered Fibers and Fabrics, 2, 1–15.
  • Sozumert, E., Farukh, F., Sabuncuoglu, B., Demirci, E., Acar, M., Pourdeyhimi, B., & Silberschmidt, V. V. (2018). Deformation and damage of random fibrous networks. International Journal of Solids and Structures, 184, 233–247. doi:10.1016/j.ijsolstr.2018.12.012
  • Tian, F., Hosseinkhani, H., Hosseinkhani, M., Khademhosseini, A., Yokoyama, Y., Estrada, G. G., & Kobayashi, H. (2008). Quantitative analysis of cell adhesion on aligned micro- and nanofibers. Journal of Biomedical Materials Research Part A, 84, 291–299. doi:10.1002/jbm.a.31304
  • Tsai, P. P. (1999). Characterization of melt blown web properties using air flow technique. International Nonwovens Journal, 36, 36–40. doi:10.1177/1558925099OS-800216
  • Tseng, P., Napier, B., Zhao, S., Mitropoulos, A. N., Applegate, M. B., Marelli, B., … Omenetto, F. G. (2017). Directed assembly of bio-inspired hierarchical materials with controlled nanofibrillar architectures. Nature Nanotechnology, 12(5), 474–480. doi:10.1038/nnano.2017.4
  • Wong, S. C., Baji, A., & Leng, S. (2008). Effect of fiber diameter on tensile properties of electrospun poly(ɛ-caprolactone). Polymer, 49(21), 4713–4722. doi:10.1016/j.polymer.2008.08.022
  • Xu, B. (1996). Identifying fabric structures with fast Fourier transform techniques. Textile Research Journal, 66, 496–506. doi:10.1177/004051759606600803
  • Yin, Y., Pan, Z., & Xiong, J. (2018). A tensile constitutive relationship and a finite element model of electrospun nanofibrous mats. Nanomaterials, 8(1), 29. doi:10.3390/nano8010029

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.