477
Views
18
CrossRef citations to date
0
Altmetric
Research Articles

Hybrid coagulation-flocculation and anaerobic-aerobic biological treatment for industrial textile wastewater: pilot case study

, , &
Pages 200-206 | Received 14 Dec 2019, Accepted 12 Feb 2020, Published online: 22 Feb 2020

References

  • Ayed, L., Chaieb, K., Cheref, A., & Bakhrouf, A. (2009). Biodegradation of triphenylmethane dye malachite green by Sphingomonas paucimobilis. World Journal of Microbiology and Biotechnology, 25(4), 705–711. doi:10.1007/s11274-008-9941-x
  • Ayed, L., Cheriaa, J., Laadhari, N., Cheref, A., & Bakhrouf, A. (2009). Biodegradation of crystal violet by an isolated Bacillus sp. Annals of Microbiology, 59(2), 267–272. doi:10.1007/BF03178327
  • Ayed, L., Achour, S., Khelifi, E., Cheref, A., & Bakhrouf, A. (2010). Use of active consortia of constructed ternary bacterial cultures via mixture design for Congo red decolorization enhancement. Chemical Engineering Journal and the Biochemical Engineering Journal, 162(2), 495–502. doi:10.1016/j.cej.2010.05.050
  • Ayed, L., Chaieb, K., Cheref, A., & Bakhrouf, A. (2010). Biodegradation of triphenylmethane dyes by Staphylococcus epidermidis. Desalination, 260(1–3), 137–146. doi:10.1016/j.desal.2010.04.052
  • Ayed, L., Khelifi, E., Ben Jannet, H., Miladi, H., Cheref, A., Achour, S., & Bakhrouf, A. (2010). Response surface methodology for decolorization of azo dye methyl orange by bacterial consortium: Produced enzymes and metabolites characterization. Chemical Engineering Journal and the Biochemical Engineering Journal, 165(1), 200–208. doi:10.1016/j.cej.2010.09.018
  • Ayed, L., Kouidhi, B., Bekir, K., & Bakhrouf, A. (2013). Biodegradation of azo and triphenylmethanes dyes: Cytotoxicity of dyes, slime production and enzymatic activities of Staphylococcus epidermidis isolated from industrial wastewater. African Journal of Microbiology Research, 7, 5550–5557.
  • Ayed, L., Ksibi, I., Cheref, A., & Bakhrouf, A. (2012). Response surface methodology for optimization of the treatment of textile wastewater by a novel bacterial consortium: Enzymes and metabolites characterization. African Journal of Biotechnology, 11, 12339–12355.
  • Ayed, L., Bakir, K., Ben Mansour, H., Hammami, S., Cheref, A., & Bakhrouf, A. (2017). In vitro mutagenicity, NMR metabolite characterization of azo and triphenylmethanes dyes by adherents bacteria and the role of the “cna” adhesion gene in activated sludge. Microbial Pathogenesis, 103, 29–39. doi:10.1016/j.micpath.2016.12.016
  • Ayed, L., Bekir, K., Achour, S., Cheref, A., & Bakhrouf, A. (2016). Exploring bioaugmentation strategies for azo dye CI reactive violet 5 decolourization using bacterial mixture: Dye response surface methodology. Water and Environment Journal, 31(1), 80–89. doi:10.1111/2016.wej.12216
  • Ayed, L., Bouguerra, A., Charef, A., Bakhrouf, A., & El Mzoughi, R. (2019). Biodegradation of olive mill wastewater by a newly isolated novel bacterial consortium under RSM optimized culture conditions. Journal of Water Process Engineering, 32, 100986. doi:10.1016/j.jwpe.2019.100986
  • Ayed, L., Zmantar, T., Bayar, S., Cheref, A., Achour, S., Mansour, H. B., & Mzoughi, R. (2019). Potential use of probiotic consortium isolated from kefir for textile azo dye decolorization. Journal of Microbiology and Biotechnology, 29(10), 1629–1635. doi:10.4014/jmb.1906.06019
  • Balan, D. S. L., & Monteiro, R. T. R. (2001). Decolourization of textile indigo dye by ligninolytic fungi. Journal of Biotechnology, 89(2–3), 141–145. doi:10.1016/S0168-1656(01)00304-2
  • Banerjee, P., Barman, S. R., Sikdar, D., Roy, U., Mukhopadhyay, A., & Das, P. (2017). Enhanced degradation of ternary dye effluent by developed bacterial consortium with RSM optimization, ANN modeling, and toxicity evaluation. Desalination and Water Treatment, 72, 1–17.
  • Chandra, R. D., Kumar, B. S., Kumar, S. A., Biswanath, S., Mizanur, R., Kumar, R. A., … Swee-Seong, T. (2018). Biodegradation of crystal violet dye by bacteria isolated from textile industry effluents. PeerJ, 72, e5015. doi:10.7717/peerj.5015
  • Chen, C. H., Chang, C. F., Ho, C. H., Tsai, T. L., & Liu, S. M. (2008). Biodegradation of crystal violet by a Shewanella sp. NTOU1. Chemosphere, 72(11), 1712–1720. doi:10.1016/j.chemosphere.2008.04.069
  • Haji, A., & Shoushtari, A. S. (2019). Grafting of poly (propylene imine) dendrimer on polypropylene nonwoven: Preparation optimization, characterization, and application. Fibers and Polymers, 20(5), 913–921. doi:10.1007/s12221-019-1123-y
  • Jadhav, J. P., Kalyani, D. C., Telke, A. A., Phugare, S. S., & Govindwar, S. P. (2010). Evaluation of the efficacy of a bacterial consortium for the removal of color, reduction of heavy metals, and toxicity from textile dye effluent. Bioresource Technology, 101(1), 165–173. doi:10.1016/j.biortech.2009.08.027
  • Khayet, M., Zahrim, A. Y., & Hilal, N. (2011). Modelling and optimization of coagulation of highly concentrated industrial grade leather dye by response surface methodology. Chemical Engineering Journal and the Biochemical Engineering Journal, 167(1), 77–83. doi:10.1016/j.cej.2010.11.108
  • Khehra, M. S., Saini, H. S., Sharma, D. K., Chadha, B. S., & Chimni, S. S. (2005). Decolorization of various azo dyes by bacterial consortium. Dyes and Pigments, 67(1), 55–61. doi:10.1016/j.dyepig.2004.10.008
  • Kim, S.-Y., An, J.-Y., & Kim, B.-W. (2008). The effects of reductant and carbon source on the microbial decolorization of azo dyes in an anaerobic sludge process. Dyes and Pigments, 76(1), 256–263. doi:10.1016/j.dyepig.2006.08.042
  • Kornaros, M., & Lyberatos, G. (2006). Biological treatment of wastewaters from a dye manufacturing company using a trickling filter. Journal of Hazardous Materials, 136(1), 95–102. doi:10.1016/j.jhazmat.2005.11.018
  • Kousha, M., Daneshvar, E., Dopeikar, H., Taghavi, D., & Bhatnagar, A. (2012). Box–Behnken design optimization of acid black 1 dye biosorption by different brown macroalgae. Chemical Engineering Journal and the Biochemical Engineering Journal, 179, 158–168. doi:10.1016/j.cej.2011.10.073
  • Kumar, P., Prasad, B., Mishra, I. M., & Chand, S. (2007). Catalytic thermal treatment of desizing wastewater. Journal of Hazardous Materials, 149(1), 26–34. doi:10.1016/j.jhazmat.2007.03.051
  • Moga, I. C., Ardelean, I., Petrescu, G., Crăciun, N., & Popa, R. (2018). The potential of biofilms from moving bed bioreactors to increase the efficiency of textile industry wastewater treatment. Industria Textila, 69, 412–418.
  • Moga, I. C., Covaliu, I. C., & Matache, M. G. (2018). Advanced wastewater treatment stage for textile industry. Industria Textila, 69, 478–482.
  • Mousavi, S., Shahraki, F., Aliabadi, M., Haji, A., Deuber, F., & Adlhart, C. (2019). Nanofiber immobilized CeO2/dendrimer nanoparticles: An efficient photocatalyst in the visible and the UV. Applied Surface Science, 479, 608–618. doi:10.1016/j.apsusc.2019.02.119
  • Roy, U., Sengupta, S., Banerjee, P., Das, P., Bhowal, A., & Datta, S. (2018). Assessment on the decolourization of textile dye (reactive yellow) using Pseudomonas sp. immobilized on fly ash: Response surface methodology optimization and toxicity evaluation. Journal of Environmental Management, 223, 185–195. doi:10.1016/j.jenvman.2018.06.026
  • Roy, D. C., Biswas, S. K., Saha, A. K., Sikdar, B., Rahman, M., Roy, A. K., … Tang, S.-S. (2018). Prodhan biodegradation of crystal violet dye by bacteria isolated from textile industry effluents. PeerJ, 6, e5015. doi:10.7717/peerj.5015
  • Saraswati, R., & Suresh, S. (2017). Comparison of different coagulants for reduction of COD from textile industry wastewater. Materials Today: Proceedings, 4, 567–574. doi:10.1016/j.matpr.2017.01.058
  • Singhal, J. C., Sharma, U. C., Bhola, R., Gurjar, J., & Govil, N. (2016). Modified textile fibers for waste water treatment. In Environmental Science and Engineering. USA: Studium Press LLC.
  • Soriano, G. A., Erb, M., Garel, C., & Audic, J. M. (2003). A comparative pilot-scale study of the performance of conventional activated sludge and membrane bioreactors under limiting operating conditions. Water Environment Research., 75(3), 225–231. doi:10.2175/106143003X141006
  • Vandevivere, P., Bianchi, R., & Verstraete, W. J. (1998). The effects of reductant and carbon source on the microbial decolorization of azo dyes in an anaerobic sludge process. Journal of Chemical Technology & Biotechnology, 72(4), 289–302.
  • Wang, X., Zhang, X. B., Liu, J. X., Xu, Q. M., & Cao, B. (2006). Application of a mixed experiment design in the study of controlled release urea for watermelon production. Chinese Journal of Soil Science, 37, 1142–1141 145.
  • Xudong, L., & Rong, J. (2008). Decolorization and biosorption for Congo red by system rice hull Schizophyllum sp. F17 under solid-state condition in a continuous flow packed-bed bioreactor. Bioresource Technology, 99, 6885–6892. doi:10.1016/j.biortech.2008.01.049
  • Yan, L. L., Zhu, L. M., Zou, Z. Y., Zhao, L. Y., Zhou, J. D., & Zhu, D. P. (2017). Adsorption and decolorization effect of cocoanut activated carbon for simulated disperse dye wastewater. Industria Textila, 68(5), 343–349.
  • Zhang, C., Tong, H. R., Zhang, D. M., & Li, H. N. (2006). Study on optimization of the formula for vegetable protein drink. Journal of Southwest Agricultural University (Natural Science), 28, 197–200.
  • Zhou, J-Z., Liu, X-L., Huang, K-h., Dong, M-S., & Jiang, H-h. (2007). Application of the mixture design to design the formulation of pure cultures in Tibetan kefir. Agricultural Sciences in China, 6(11), 1383–1389. doi:10.1016/S1671-2927(07)60187-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.