184
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Electro-mechanical characterization of shape memory alloy hybrid yarn based adaptive fiber-reinforced plastics

ORCID Icon, &
Pages 306-312 | Received 13 Feb 2020, Accepted 17 Mar 2020, Published online: 07 Apr 2020

References

  • Ashir, M., Hahn, L., Kluge, A., Nocke, A., & Cherif, C. (2016). Electro-bending characterization of adaptive 3D fiber reinforced plastics based on shape memory alloys. Smart Materials and Structures, 25(3), 35041. doi:10.1088/0964-1726/25/3/035041
  • Ashir, M., Theiss, C., Nocke, A., & Cherif, C. (2017). Analysis of the deformation speed of adaptive fiber reinforced plastics with variable hinged width. IOP Conference Series: Materials Science and Engineering, 254, 42003. doi:10.1088/1757-899X/254/4/042003
  • Ashir, M., Vo, D. M. P., Nocke, A., & Cherif, C. (2018). Adaptive fiber-reinforced plastics based on open reed weaving functionalization. IOP Conference Series: Materials Science and Engineering, 406, 12063. doi:10.1088/1757-899X/406/1/012063
  • Ashir, M., Hindahl, J., Nocke, A., & Cherif, C. (2019a). Development of an adaptive morphing wing based on fiber-reinforced plastics and shape memory alloys. Journal of Industrial Textiles, 1–16. doi:10.1177/1528083718823295
  • Ashir, M., Hindahl, J., Nocke, A., & Cherif, C. (2019b). A statistical approach for the fabrication of adaptive pleated fiber reinforced plastics. Composite Structures, 207, 537–545. doi:10.1016/j.compstruct.2018.09.061
  • Ashir, M., Nocke, A., & Cherif, C. (2019a). Maximum deformation of shape memory alloy based adaptive fiber-reinforced plastics. Composites Science and Technology, 184, 107860. doi:10.1016/j.compscitech.2019.107860
  • Ashir, M., Nocke, A., & Cherif, C. (2019b). Development and mechanical properties of adaptive fiber-reinforced plastics. Journal of Industrial Textiles, 48(6), 1081–1096. doi:10.1177/1528083718757523
  • Ashir, M., Nocke, A., & Cherif, C. (2019c). Development of shape memory alloys hybrid yarns for adaptive fiber-reinforced plastics. Textile Research Journal, 89(8), 1371–1380. doi:10.1177/0040517518770678
  • Ashir, M., Hindahl, J., Nocke, A., Sennewald, C., & Cherif, C. (2019). Development of adaptive pleated woven fabrics with shape memory alloys. Textile Research Journal, 89(12), 2330–2341. doi:10.1177/0040517518792736
  • Ashir, M., Nocke, A., Hanke, U., & Cherif, C. (2020). Adaptive hinged fiber reinforced plastics with tailored shape memory alloy hybrid yarn. Polymer Composites, 41(1), 191–200. doi:10.1002/pc.25359
  • Bodaghi, M., Damanpack, A. R., Aghdam, M. M., & Shakeri, M. (2014). Active shape/stress control of shape memory alloy laminated beams. Composites Part B: Engineering, 56, 889–899. doi:10.1016/j.compositesb.2013.09.018
  • Cohades, A., Hostettler, N., Pauchard, M., Plummer, C. J. G., & Michaud, V. (2018). Stitched shape memory alloy wires enhance damage recovery in self-healing fibre-reinforced polymer composites. Composites Science and Technology, 161, 22–31. doi:10.1016/j.compscitech.2018.03.040
  • Cook, P. R., Alavija, A., Wildy, S. J., & Arkwright, J. W. (2017). Strain measurement in unidirectional carbon fibre utilising embedded optical strain gauges [Paper presentation]. In 9th Australasian Congress on Applied Mechanics (ACAM9) (pp. 148–155). Engineers Australia.
  • Daghia, F., Inman, D. J., Ubertini, F., & Viola, E. (2008). Shape memory alloy hybrid composite plates for shape and stiffness control. Journal of Intelligent Material Systems and Structures, 19(5), 609–619. doi:10.1177/1045389X07077901
  • Duerig, T. W., Pelton, A. R. (1994). TiNi shape memory alloys, materials properties handbook, titanium alloys. Advanced Materials. Retrieved March 15, 2020, from https://nitinol.com/wp-content/uploads/references/045.pdf.
  • F.A. Kümpers GmbH & Co. KG. (2018). Woven fabric (package insert).
  • Fehrer, E. (1981). Apparatus for manufacturing a yarn. US Patent 4,249,368.
  • Gupta, A. K., Velmurugan, R., & Joshi, M. (2017). Mechanical characterization of pseudoelastic shape memory alloy hybrid composites. ISSS Journal of Micro and Smart Systems, 6(2), 149–160. doi:10.1007/s41683-017-0016-9
  • Häntzsche, E., Matthes, A., Nocke, A., & Cherif, C. (2013). Characteristics of carbon fiber based strain sensors for structural-health monitoring of textile-reinforced thermoplastic composites depending on the textile technological integration process. Sensors and Actuators A: Physical, 203, 189–203. doi:10.1016/j.sna.2013.08.045
  • Hexion. (2020). Technical data sheet. Retrieved March 10, 2020, from http://www.metyx.com/wp-content/uploads/PDF_Files/Hexion/TDS/TDS%20RIMH%20137.pdf.
  • Huang, W. (2002). On the selection of shape memory alloys for actuators. Materials & Design, 23(1), 11–19. doi:10.1016/S0261-3069(01)00039-5
  • Ishtiaque, S. M., Salhotra, K. R., & Gowda, R. V. M. (2003). Friction spinning. Textile Progress, 33(2), 1–68. doi:10.1080/00405160308688958
  • Jani, J. M., Leary, M., Subic, A., & Gibson, M. A. (2014). A review of shape memory alloy research, applications and opportunities. Materials & Design (1980–2015), 56, 1078–1113. doi:10.1016/j.matdes.2013.11.084
  • Kamarian, S., & Shakeri, M. (2017). Thermal buckling analysis and stacking sequence optimization of rectangular and skew shape memory alloy hybrid composite plates. Composites Part B: Engineering, 116, 137–152. doi:10.1016/j.compositesb.2017.01.059
  • Kapuria, S., & Das, H. N. (2018). Improving hydrodynamic efficiency of composite marine propellers in off-design conditions using shape memory alloy composite actuators. Ocean Engineering, 168, 185–203. doi:10.1016/j.oceaneng.2018.09.001
  • Lehmann, B., & Herzberg, C. (2016). Yarn construction and yarn formation techniques. In Cherif, C. (Ed.), Textile materials for lightweight constructions: Technologies-methods-materials-properties (pp. 103–157). Springer-Verlag GmbH.
  • Memry GmbH. (2015). Specification sheet. Retrieved September 24, 2017, from www.memry.com.
  • Otsuka, K., & Wayman, C. M. (2002). Shape memory materials. Cambridge University Press.
  • Pagel, K., Werner, M., Bucht, A., Rotsch, C. (2013). Serientaugliche Aktorlösungen und Produktionsprozesse für Formgedächtnissysteme, eine Leittechnologieentwicklung für KMU – SerAPro. Retrieved March 15, 2020, from http://www.forschung-fom.de/fileadmin/user_upload/Dokumente/Konferenz/F.O.M.-Konferenz_2013_K._Pagel__M._Werner.pdf.
  • Wang, G., Wang, Y., Zhang, P., Zhai, Y., Luo, Y., Li, L., & Luo, S. (2018). Structure dependent properties of carbon nanomaterials enabled fiber sensors for in situ monitoring of composites. Composite Structures, 195, 36–44.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.