232
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Geometrical modeling of yarn’s cross-section towards a realistic unit cell of 2D and 3D woven composites

, , ORCID Icon, &
Pages 767-782 | Received 03 Dec 2019, Accepted 31 May 2020, Published online: 24 Jun 2020

References

  • Cheng, X., Xiong, J., & Bai, J. (2012). Analytical solution for predicting in-plane elastic shear properties of 2D orthogonal PWF composites. Chinese Journal of Aeronautics, 25(4), 575–583. https://doi.org/10.1016/S1000-9361(11)60421-4
  • Couégnat, G., Ayadi, H., Saurat, C., & Rohmer, E. (2013). Towards realistic geometric modeling of woven fabrics. In 19th International Conference on Composite Materials (ICCM19), Montréal, Canada.
  • Dai, S., Cunningham, P. R., Marshall, S., & Silva, C. (2015). Influence of fibre architecture on the tensile, compressive and flexural behaviour of 3D woven composites. Composites Part A: Applied Science and Manufacturing, 69, 195–207. https://doi.org/10.1016/j.compositesa.2014.11.012
  • Endruweit, A., Zeng, X., Matveev, M., & Long, A. C. (2018). Effect of yarn cross-sectional shape on resin flow through inter-yarn gaps in textile reinforcements. Composites Part A: Applied Science and Manufacturing, 104, 139–150. https://doi.org/10.1016/j.compositesa.2017.10.020
  • Green, S. D., Matveev, M. Y., Long, A. C., Ivanov, D., & Hallett, S. R. (2014). Mechanical modelling of 3D woven composites considering realistic unit cell geometry. Composite Structures, 118, 284–293. https://doi.org/10.1016/j.compstruct.2014.07.005
  • Ha, M. H., Cauvin, L., & Rassineux, A. (2013) Simulation of the mechanical behavior of a three dimensional composite. In the 19th International Conference On Composite Materials (ICCM19), pp 969–976.
  • Hallal, A., Younes, R., & Fardoun, F. (2013). Review and comparative study of analytical modeling for the elastic properties of textile composites. Composites Part B: Engineering, 50, 22–31. https://doi.org/10.1016/j.compositesb.2013.01.024
  • Hallal, A., Younes, R., Fardoun, F., & Nehme, S. (2012). Improved analytical model to predict the effective elastic properties of 2.5D interlock woven fabrics composite. Composite Structures, 94(10), 3009–3028. https://doi.org/10.1016/j.compstruct.2012.03.019
  • Hayat, K., Lei, X., & Ali, H. T. (2018). Prediction of elastic behavior of woven fabric reinforced plastics composites using two-step homogenization. In IEEE 15th International Bhurban Conference on Applied Sciences and Technology (IBCAST), pp. 36–42.
  • Isart, N., El Said, B., Ivanov, D. S., Hallett, S. R., Mayugo, J. A., & Blanco, N. (2015). Internal geometric modelling of 3D woven composites: A comparison between different approaches. Composite Structures, 132, 1219–1230. https://doi.org/10.1016/j.compstruct.2015.07.007
  • Ishikawa, T., & Chou, T. W. (1982). Stiffness and strength behaviour of woven fabric composites. Journal of Materials Science, 17(11), 3211–3220. https://doi.org/10.1007/BF01203485
  • Ismail, M., Ismail, A., Hammoud, M., & Hallal, A. (2016). Parametric study of tri-axially braided composite. International Journal of Composite Materials, 6(3), 68–78.
  • Jamshidi Avanaki, M., & Jeddi, A. A. (2017). Theoretical analysis of geometrical and mechanical parameters in plain woven structures. Journal of the Textile Institute, 108(3), 418–427. https://doi.org/10.1080/00405000.2016.1169011
  • Kari, S., Kumar, M., Jones, I. A., Warrior, N. A., Long, A. C. (2008). Effect of yarn cross-sectional shapes and crimp on the mechanical properties of 3D woven composites. In Proceedings of the 17th IFAC World Congress, pp. 1–10.
  • Kim, M., & Song, J. I. (2011). Geometry effect on mechanical properties of woven fabric composites. Journal of Central South University of Technology, 18(6), 1985–1993. https://doi.org/10.1007/s11771-011-0932-y
  • Lomov, S. V., Gusakov, A. V., Huysmans, G., Prodromou, A., & Verpoest, I. (2000). Textile geometry preprocessor for meso-mechanical models of woven composites. Composites Science and Technology, 60(11), 2083–2095. https://doi.org/10.1016/S0266-3538(00)00121-4
  • Manjunath, R. N., & Behera, B. K. (2017). Modelling the geometry of the unit cell of woven fabrics with integrated stiffener sections. The Journal of the Textile Institute, 108(11), 2006–2012. https://doi.org/10.1080/00405000.2017.1308785
  • Naik, N. K., & Kuchibhotla, R. (2002). Analytical study of strength and failure behaviour of plain weave fabric composites made of twisted yarns. Composites Part A: Applied Science and Manufacturing, 33(5), 697–708. https://doi.org/10.1016/S1359-835X(02)00012-X
  • Naik, N. K., & Shembekar, P. S. (1992). Elastic behavior of woven fabric composites: I—Lamina analysis. Journal of Composite Materials, 26(15), 2196–2225. https://doi.org/10.1177/002199839202601502
  • Naik, N. K., & Sridevi, E. (2002). An analytical method for thermoelastic analysis of 3D orthogonal interlock woven composites. Journal of Reinforced Plastics and Composites, 21(13), 1149–1191. https://doi.org/10.1177/073168402128987716
  • Naik, N. K., Azad, S. N., & Prasad, P. D. (2002). Stress and failure analysis of 3D angle interlock woven composites. Journal of Composite Materials, 36(1), 93–123. https://doi.org/10.1177/0021998302036001303
  • Nauman, S., Cristian, I., & Boussu, F. (2012). Geometrical modelling of angle warp interlock fabrics. Journal of the Textile Institute, 103(7), 766–776. https://doi.org/10.1080/00405000.2011.606981
  • Obert, E., Daghia, F., Ladeveze, P., & Bergerot, A. (2014). Damage modelling of woven composites on the microscale and mesoscale. In 16th European Conference on Composite Materials, Seville, Spain.
  • Pearce, N. R. L., Summerscales, J., & Guild, F. J. (2000). Improving the resin transfer moulding process for fabric-reinforced composites by modification of the fabric architecture. Composites Part A: Applied Science and Manufacturing, 31(12), 1433–1441. https://doi.org/10.1016/S1359-835X(00)00140-8
  • Perie, G., Lomov, S. V., Verpoest, I., & Marsal, D. (2009). Meso-scale modelling and homogenisation of interlock reinforced composite. In 17th International Conference on Composite Materials (ICCM-17).
  • Potter, E., Pinho, S. T., Robinson, P., Iannucci, L., & McMillan, A. J. (2012). Mesh generation and geometrical modelling of 3D woven composites with variable tow cross-sections. Computational Materials Science, 51(1), 103–111. https://doi.org/10.1016/j.commatsci.2011.06.034
  • Ruijter, W. (2009). Analysis of mechanical properties of woven textile composites as a function of textile geometry [PhD thesis]. University of Nottingham.
  • Tong, L., Mouritz, A. P., & Bannister, M. K. (2002). 3D fibre reinforced polymer composites. Elsevier.
  • Wu, Z. (2009). Three-dimensional exact modeling of geometric and mechanical properties of woven composites. Acta Mechanica Solida Sinica, 22(5), 479–486. https://doi.org/10.1016/S0894-9166(09)60299-8
  • Wu, Z. J., Brown, D., & Davies, J. M. (2002). An analytical modelling technique for predicting the stiffness of 3-D orthotropic laminated fabric composites. Composite Structures, 56(4), 407–412. https://doi.org/10.1016/S0263-8223(02)00024-7
  • Yoshioka, K., & Seferis, J. C. (2002). Modeling of tensile fatigue damage in resin transfer molded woven carbon fabric composites. Composites Part A: Applied Science and Manufacturing, 33(11), 1593–1601. https://doi.org/10.1016/S1359-835X(02)00109-4
  • Zheng, T., Zhang, X., Zhao, Z., Wu, Z., & Li, T. (2014). Geometric structure model of plain woven fabric based on progressive spring-slide mechanics. Textile Research Journal, 84(17), 1803–1819. https://doi.org/10.1177/0040517514528562
  • Zheng, Z., Zhao, X., Wang, C., & Sun, X. (2015). Investigation of automated geometry modeling process of woven fabrics based on the yarn structures. Journal of the Textile Institute, 106(9), 925–933. https://doi.org/10.1080/00405000.2014.952966

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.