148
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

A model for predicting the tensile strength of ultrafine glass fiber felts with mathematics and artificial neural network

, , , , &
Pages 783-791 | Received 13 Apr 2020, Accepted 31 May 2020, Published online: 16 Jun 2020

References

  • Adanur, S., & Liao, T. (1999). Fiber arrangement characteristics and their effects on nonwoven tensile behavior. Textile Research Journal, 69(11), 816–824. https://doi.org/10.1177/004051759906901104
  • Ahmad, G. G. (2016). Using artificial neural networks with graphical user interface to predict the strength of carded cotton yarns. The Journal of the Textile Institute, 107(3), 386–394. https://doi.org/10.1080/00405000.2015.1034930
  • Altun, F., Kişi, Ö., & Aydin, K. (2008). Predicting the compressive strength of steel fiber added lightweight concrete using neural network. Computational Materials Science, 42(2), 259–265. https://doi.org/10.1016/j.commatsci.2007.07.011
  • Aso, S., & Kinoshita, R. (1966). Sound absorption coefficient of glass wool. Journal of the Textile Machinery Society of Japan, 12(3), 101–106. https://doi.org/10.4188/jte1955.12.101
  • Bhadeshia, H. K. D. H., Dimitriu, R. C., Forsik, S., Pak, J. H., & Ryu, J. H. (2009). Performance of neural networks in materials science. Materials Science and Technology, 25(4), 504–510. https://doi.org/10.1179/174328408X311053
  • Bilgehan, M., & Turgut, P. (2010). Artificial neural network approach to predict compressive strength of concrete through ultrasonic pulse velocity. Research in Nondestructive Evaluation, 21(1), 1–17. https://doi.org/10.1080/09349840903122042
  • Capdevila, C., Garcia-Mateo, C., Caballero, F. G., & Andres, C. G. (2006). Neural network analysis of the influence of processing on strength and ductility of automotive low carbon sheet steels. Computational Materials Science, 38(1), 192–201. https://doi.org/10.1016/j.commatsci.2006.02.005
  • Hearle, J. W. S., & Stevenson, P. J. (1963). Nonwoven fabric studies: Part III: The anisotropy of nonwoven fabrics. Textile Research Journal, 33(11), 877–888. https://doi.org/10.1177/004051756303301101
  • Jeon, S. Y., Yu, W. Y., Kim, M. S., Lee, J. S., & Kim, J. W. (2014). Predicting the tensile strength of needle-punched nonwoven mats using X-ray computed tomography and a statistical model. Fibers and Polymers, 15(6), 1202–1210. https://doi.org/10.1007/s12221-014-1202-z
  • Jiang, Z. Y., Zhang, Z., & Friedrich, K. (2007). Prediction on wear properties of polymer composites with artificial neural networks. Composites Science and Technology, 67(2), 168–176. https://doi.org/10.1016/j.compscitech.2006.07.026
  • Lai, S., & Serra, M. (1997). Concrete strength prediction by means of neural network. Construction and Building Materials, 11(2), 93–98. https://doi.org/10.1016/S0950-0618(97)00007-X
  • Lee, J. A., Almond, D. P., & Harris, B. (1999). The use of neural networks for the prediction of fatigue lives of composite materials. Composites Part A: Applied Science and Manufacturing, 30(10), 1159–1169. https://doi.org/10.1016/S1359-835X(99)00027-5
  • Lee, J. J., Kim, D., Chang, S. K., & Nocete, C. F. M. (2009). An improved application technique of the adaptive probabilistic neural network for predicting concrete strength. Computational Materials Science, 44(3), 988–998. https://doi.org/10.1016/j.commatsci.2008.07.012
  • Li, C. D., & Chen, Z. F. (2015). Effect of beating revolution on dispersion of flame attenuated glass wool suspension and tensile strength of associated glass fiber wet-laid mat. Powder Technology, 279, 221–227. https://doi.org/10.1016/j.powtec.2015.04.017
  • Li, C. D., Chen, Z. F., & Saeed, M. U. (2016). Characterization of hybrid glass wool suspensions and optimization of microstructure and tensile strength of the associated wet-laid mats by various blendings and numbers of beating revolutions. Materials and Structures, 49(5), 1861–1869. https://doi.org/10.1617/s11527-015-0617-3
  • Mackay, D. J. C. (1992). Bayesian interpolation. Neural Computation, 4(3), 415–447. https://doi.org/10.1162/neco.1992.4.3.415
  • Nazari, A., & Torgal, P. (2013). Predicting compressive strength of different geopolymers by artificial neural networks. Ceramics International, 39(3), 2247–2257. https://doi.org/10.1016/j.ceramint.2012.08.070
  • Ozdemir, H., & Mert, E. (2013). The effects of fabric structural parameters on the tensile, bursting, and impact strengths of cellular woven fabrics. Journal of the Textile Institute, 104(3), 330–338. https://doi.org/10.1080/00405000.2012.725521
  • Pan, N., Chen, J., Seo, M., & Backer, S. (1997). Micromechanics of a planar hybrid fibrous network. Textile Research Journal, 67(12), 907–925. https://doi.org/10.1177/004051759706701208
  • Wang, H., Zhu, J. J., Jin, X. Y., & Wu, H. B. (2013). A study on the entanglement and high-strength mechanism of spunlaced nonwoven fabric of hydrophilic PET fibers. Journal of Engineered Fibers and Fabrics, 8(4), 60–67. https://doi.org/10.1177/155892501300800415
  • Yang, Y., Chen, Z., Chen, Z., Fu, R., Li, Y., & Sheng, C. (2015). Processing technique and uniformity affecting tensile strength and hydrophobicity properties of glass wool felt. Fibers and Polymers, 16(7), 1587–1594. https://doi.org/10.1007/s12221-015-5310-1
  • Yang, Y., Chen, Z. F., Wu, C., Chen, Z., Guan, S. N., Li, Y. M., & Bao, S. T. (2017). Effect of the number and stacking sequence of membranes in glass fiber felt composite structure on acoustic properties. Fibers and Polymers, 18(1), 182–189. https://doi.org/10.1007/s12221-017-6333-6
  • Yang, Y., Cheng, X. Y., Chen, Z. F., Fu, R. L., Chen, Z., Qiu, J. L., & Su, D. (2012). Influence of density on the thermal conductivity of fiberglass felt. Advanced Materials Research, 628, 33–36. https://doi.org/10.4028/www.scientific.net/AMR.628.33
  • Zaarour, B., Zhu, L., & Jin, X. Y. (2019). Controlling the surface structure, mechanical properties, crystallinity, and piezoelectric properties of electrospun PVDF nanofibers by maneuvering molecular weight. Soft Materials, 17(2), 181–189. https://doi.org/10.1080/1539445X.2019.1582542
  • Zhang, Z., Friedrich, K., & Velten, K. (2002). Prediction on tribological properties of short fibre composites using artificial neural networks. Wear, 252(7–8), 668–675. https://doi.org/10.1016/S0043-1648(02)00023-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.