323
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

A silver/silver chloride woven electrode with convex based on electrical impedance tomography

ORCID Icon & ORCID Icon
Pages 1067-1079 | Received 02 Mar 2020, Accepted 19 Jul 2020, Published online: 31 Jul 2020

References

  • An, X., & Stylios, G. K. (2018). A hybrid textile electrode for electrocardiogram (ECG) measurement and motion tracking. Materials, 11(10), 1887. https://doi.org/10.3390/ma11101887
  • An, X., Tangsirinaruenart, O., & Stylios, G. K. (2019). Investigating the performance of dry textile electrodes for wearable end-uses. The Journal of the Textile Institute, 110(1), 151–158. https://doi.org/10.1080/00405000.2018.1508799
  • Ankhili, A., Tao, X., Cochrane, C., Koncar, V., Coulon, D., & Tarlet, J. M. (2018). Comparative study on conductive knitted fabric electrodes for long-term electrocardiography monitoring: Silver-plated and PEDOT:PSS coated fabrics. Sensors (Sensors), 18(11), 3890. https://doi.org/10.3390/s18113890
  • Baek, J. Y., An, J. H., Choi, J. M., Park, K. S., & Lee, S. H. (2008). Flexible polymeric dry electrodes for the long-term monitoring of ECG. Sensors and Actuators A: Physical, 143(2), 423–429. https://doi.org/10.1016/j.sna.2007.11.019
  • Bao, B., Ji, B., Wang, M., Gao, K., Yang, B., Chen, X., Wang, X., & Liu, J. (2019). Development and characterisation of electroplating silver/silver chloride modified microelectrode arrays. Micro & Nano Letters, 14(3), 299–303. https://doi.org/10.1049/mnl.2018.5113
  • Castano, L. M., & Flatau, A. B. (2014). Smart fabric sensors and e-textile technologies: A review. Smart Materials and Structures, 23(5), 053001. https://doi.org/10.1088/0964-1726/23/5/053001
  • Das, P. S., Hossain, M. F., & Park, J. Y. (2017). Chemically reduced graphene oxide-based dry electrodes as touch sensor for electrocardiograph measurement. Microelectronic Engineering, 180, 45–51. https://doi.org/10.1016/j.mee.2017.05.048
  • Das, P. S., & Park, J. Y. (2017). A flexible touch sensor based on conductive elastomer for biopotential monitoring applications. Biomedical Signal Processing and Control, 33, 72–82. https://doi.org/10.1016/j.bspc.2016.11.008
  • Das, P. S., Yoon, H. S., Kim, J., Kim, D. H., & Park, J. Y. (2018). Simple fabrication method of an ultrasensitive gold micro-structured dry skin sensor for biopotential recording. Microelectronic Engineering, 197(April), 96–103. https://doi.org/10.1016/j.mee.2018.06.005
  • Erdmier, C., Hatcher, J., & Lee, M. (2016). Wearable device implications in the healthcare industry. Journal of Medical Engineering & Technology, 40(4), 141–148. https://doi.org/10.3109/03091902.2016.1153738
  • Fiedler, P., Griebel, S., Pedrosa, P., Fonseca, C., Vaz, F., Zentner, L., Zanow, F., & Haueisen, J. (2015). Multichannel EEG with novel Ti/TiN dry electrodes. Sensors and Actuators A: Physical, 221, 139–147. https://doi.org/10.1016/j.sna.2014.10.010
  • Ghosh, S., Mahadevappa, M., & Mukhopadhyay, J. (2017). A 2D electrode-skin model for electrical & contact impedance characterization of Bio Impedance [Paper presentation]. IEEE Region 10 Annual International Conference, Proceedings (TENCON) (Vol. 1, pp. 2292–2295). IEEE. https://doi.org/10.1109/TENCON.2016.7848437
  • Haghi, M., Thurow, K., Habil, I., Stoll, R., & Habil, M. (2017). Wearable devices in medical internet of things: Scientific research and commercially available devices. Healthcare Informatics Research, 23(1), 4–15. https://doi.org/10.4258/hir.2017.23.1.4
  • Joutsen, A. S., Kaappa, E. S., & Karinsalo, T. J. (2018). Dry electrode sizes in recording ECG and heart rate in wearable applications. EMBEC & NBC, 65, 735–738. https://doi.org/10.1007/978-981-10-5122-7
  • Jung, H. C., Moon, J. H., Baek, D. H., Lee, J. H., Choi, Y. Y., Hong, J. S., & Lee, S. H. (2012). CNT/PDMS composite flexible dry electrodes for long-term ECG monitoring. IEEE Transactions on Bio-Medical Engineering, 59(5), 1472–1479. https://doi.org/10.1109/TBME.2012.2190288
  • Lee, E., Kim, I., Liu, H., & Cho, G. (2017). Exploration of AgNW/PU nanoweb as ECG textile electrodes and comparison with Ag/AgCl electrodes. Fibers and Polymers, 18(9), 1749–1753. https://doi.org/10.1007/s12221-017-7410-6
  • Li, G., Wang, S., & Duan, Y. Y. (2017). Towards gel-free electrodes: A systematic study of electrode-skin impedance. Sensors and Actuators B: Chemical, 241, 1244–1255. https://doi.org/10.1016/j.snb.2016.10.005
  • Li, G., Wang, S., & Duan, Y. Y. (2018). Towards conductive-gel-free electrodes: Understanding the wet electrode, semi-dry electrode and dry electrode-skin interface impedance using electrochemical impedance spectroscopy fitting. Sensors and Actuators B: Chemical, 277, 250–260. https://doi.org/10.1016/j.snb.2018.08.155
  • Liu, D., Wang, Q., Zhang, Y., Liu, X., Lu, J., & Sun, J. (2019). A study on quality assessment of the surface EEG signal based on fuzzy comprehensive evaluation method. Computer Assisted Surgery (Abingdon, England), 24(suppl 1), 167–173. https://doi.org/10.1080/24699322.2018.1557888
  • Liu, Y., Pharr, M., & Salvatore, G. A. (2017). Lab-on-Skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano, 11(10), 9614–9635. https://doi.org/10.1021/acsnano.7b04898
  • Marozas, V., Petrenas, A., Daukantas, S., & Lukosevicius, A. (2011). A comparison of conductive textile-based and silver/silver chloride gel electrodes in exercise electrocardiogram recordings. Journal of Electrocardiology, 44(2), 189–194. https://doi.org/10.1016/j.jelectrocard.2010.12.004
  • Nardelli, M., Lanata, A., Valenza, G., Felici, M., Baragli, P., & Scilingo, E. P. (2020). A tool for the real-time evaluation of ECG signal quality and activity: Application to submaximal treadmill test in horses. Biomedical Signal Processing and Control, 56, 101666. https://doi.org/10.1016/j.bspc.2019.101666
  • Pani, D., Achilli, A., & Bonfiglio, A. (2018). Survey on textile electrode technologies for electrocardiographic (ECG) monitoring, from metal wires to polymers. Advanced Materials Technologies, 3(10), 1800008–1800014. https://doi.org/10.1002/admt.201800008
  • Posada-Quintero, H. F., Reljin, N., Eaton-Robb, C., Noh, Y., Riistama, J., & Chon, K. H. (2018). Analysis of consistency of transthoracic bioimpedance measurements acquired with dry carbon black PDMS electrodes, adhesive electrodes, and wet textile electrodes. Sensors (Sensors), 18(6), 1719. https://doi.org/10.3390/s18061719
  • Salvo, P., Raedt, R., Carrette, E., Schaubroeck, D., Vanfleteren, J., & Cardon, L. (2012). A 3D printed dry electrode for ECG/EEG recording. Sensors and Actuators A: Physical, 174(1), 96–102. https://doi.org/10.1016/j.sna.2011.12.017
  • Satija, U., Ramkumar, B., & Sabarimalai Manikandan, M. (2018). A review of signal processing techniques for electrocardiogram signal quality assessment. IEEE Reviews in Biomedical Engineering, 11, 36–52. https://doi.org/10.1109/RBME.2018.2810957
  • Vasile, S., Deruck, F., Hertleer, C., De Raeve, A., Ellegiers, T., & De Mey, G. (2017). Study of the contact resistance of interlaced stainless steel yarns embedded in hybrid woven fabrics. Autex Research Journal, 17(2), 170–176. https://doi.org/10.1515/aut-2016-0024
  • Wang, F., Liu, S., Shu, L., & Tao, X. M. (2017). Low-dimensional carbon based sensors and sensing network for wearable health and environmental monitoring. Carbon, 121, 353–367. https://doi.org/10.1016/j.carbon.2017.06.006
  • Xiao, X., Pirbhulal, S., Dong, K., Wu, W., & Mei, X. (2017). Performance evaluation of plain weave and honeycomb weave electrodes for human ECG monitoring. Journal of Sensors, 2017, 1–13. https://doi.org/10.1155/2017/7539840
  • Xu, X., Liu, Z., He, P., & Yang, J. (2019). Screen printed silver nanowire and graphene oxide hybrid transparent electrodes for long-term electrocardiography monitoring. Journal of Physics D: Applied Physics, 52(45). https://doi.org/10.1088/1361-6463/ab3869
  • Yoon, D., Baggett, A., Phongikaroon, S., King, J. A., & Marsden, K. (2019). Fundamental data acquisition toward silver-silver chloride reference electrode. Journal of the Electrochemical Society, 166(6), E159–E164. https://doi.org/10.1149/2.0721906jes
  • Zhang, C., Zhou, G., Rao, W., Fan, L., Xu, W., & Xu, J. (2018). A simple method of fabricating nickel-coated cotton fabrics for wearable strain sensor. Cellulose, 25(8), 4859–4870. https://doi.org/10.1007/s10570-018-1893-1
  • Zhang, X., & Zhong, Y. (2020a). An improved theoretical model of the resistive network for woven structured electronic textile. The Journal of the Textile Institute, 111(2), 235–248. https://doi.org/10.1080/00405000.2019.1631095
  • Zhang, X., & Zhong, Y. (2020b). Development of woven textile electrodes with enhanced moisture-wicking properties. The Journal of the Textile Institute, 0(0), 1–13. https://doi.org/10.1080/00405000.2020.1794665
  • Zhou, W., Liu, W., Liu, S., Zhang, G., & Shen, Z. (2016). Experimental investigation on surface wettability of copper-based dry bioelectrodes. Sensors and Actuators, A: Physical, 244, 237–242. https://doi.org/10.1016/j.sna.2016.04.044

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.