442
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Investigation of the flammability properties of a cotton and elastane blend denim fabric in the presence of boric acid, borax, and nano-SiO2

&
Pages 1080-1092 | Received 05 Aug 2019, Accepted 19 Jul 2020, Published online: 10 Aug 2020

References

  • Birnbaum, L. S., & Staskal, D. F. (2004). Brominated flame retardants: Cause for concern. Environmental Health Perspectives, 112(1), 9–17. https://doi.org/10.1289/ehp.6559
  • Chivas, C., Guillaume, E., Sainrat, A., & Barbosa, V. (2009). Assessment of risks and benefits in the use of flame retardants in upholstered furniture in continental Europe. Fire Safety Journal, 44(5), 801–807. https://doi.org/10.1016/j.firesaf.2009.03.009
  • Didane, N., Giraud, S., Devaux, E., Lemort, G., & Capon, G. (2012). Thermal and fire resistance of fibrous materials made by PET containing flame retardant agents. Polymer Degradation and Stability, 97(12), 2545–2551. https://doi.org/10.1016/j.polymdegradstab.2012.07.006
  • Dipietro, J., Stepniczka, H., & Nametz, R. C. (1971). A study of flammability of cotton, polyester, and their blends. Textile Research Journal, 41(7), 593–599. https://doi.org/10.1177/004051757104100707
  • El-Ghezal, S., Babay, A., Dhouib, S., & Cheikhrouhou, M. (2009). Study of the impact of elastane's ratio and finishing process on the mechanical properties of stretch denim. Journal of the Textile Institute, 100(3), 245–253. https://doi.org/10.1080/00405000701757925
  • Ertaş, O. G., Zervent Ünal, B., & Çelik, N. (2016). Analyzing the effect of the elastane-containing dual- core weft yarn density on the denim fabric performance properties. The Journal of the Textile Institute, 107(1), 116–126. https://doi.org/10.1080/00405000.2015.1016319
  • Forouharshad, M., Montazer, M., Moghadam, M. B., & Saligheh, O. (2011). Flame retardant wool using zirconium oxychloride in various acidic media optimized by RSM. Thermochimica Acta, 516(1-2), 29–34. https://doi.org/10.1016/j.tca.2011.01.007
  • Gbewonyo, S., Carpenter, A. W., Gause, C. B., Mucha, N. R., & Zhang, L. (2017). Low thermal conductivity carbon fibrous composite nanomaterial enabled by multi-scale porous structure. Materials & Design, 134, 218–225.
  • Horrocks, A. R. (2008). Flame retardant/resistant textile coatings and laminates. In A. R. Horrocks and D. Price (Eds.), Advances in fire retardant materials (pp. 159–187). Woodhead Publishing.
  • Horrocks, A. R. (2011). Flame retardant challenges for textiles and fibres: New chemistry versus innovatory solutions. Polymer Degradation and Stability, 96(3), 377–392. https://doi.org/10.1016/j.polymdegradstab.2010.03.036
  • Horrocks, A. R., & Anand, S. C. (2000). Heat and flame production. In A. Richard Horrocks and Subhash C. Anand (Eds.), Handbook of Technical Textiles (pp. 223–263). The Textile Institute.
  • Horrocks, A. R., Nazare, S., & Kandola, B. (2004). The particular flammability hazards of night-wear. Fire Safety Journal, 39(4), 259–276. https://doi.org/10.1016/j.firesaf.2003.11.005
  • ISO 13937-1:2000 :Textiles — Tear properties of fabrics — Part 1: Determination of tear force using ballistic pendulum method (Elmendorf). https://www.iso.org/standard/23369.html
  • ISO 13934-1:2013: Textiles — Tensile properties of fabrics — Part 1: Determination of maximum force and elongation at maximum force using the strip method. https://www.iso.org/standard/60676.html
  • ASTM D2594 - 04: Standard Test Method for Stretch Properties of Knitted Fabrics Having Low Power. https://www.astm.org/Standards/D2594.htm
  • ISO 13934-1,2013: Textiles — Tensile properties of fabrics — Part 1: Determination of maximum force and elongation at maximum force using the strip method. https://www.iso.org/standard/61739.html https://www.sigmaaldrich.com/catalog/product/aldrich
  • ISO 4589-2: 2017. Plastics- Determination of burning behaviour by oxygen index - annual book of ASTM standards.
  • Kamath, M. G., Bhat, G. S., Parikh, D. V., & Condon, B. D. (2009). Processing and characterization of flame retardant cotton blend nonwovens for soft furnishings to meet federal flammability standards. Journal of Industrial Textiles, 38(3), 251–262. https://doi.org/10.1177/1528083708098912
  • Kaynak, H. K. (2017). Optimization of stretch and recovery properties of woven stretch fabrics. Textile Research Journal, 87(5), 582–592. https://doi.org/10.1177/0040517516632480
  • Laoutid, F., Bonnaud, L., Alexandre, M., Lopez-Cuesta, J. M., & Dubois, P. (2009). New prospects in flame retardant polymer materials: From fundamentals to nanocomposites. Materials Science and Engineering: R: Reports, 63(3), 100–125. https://doi.org/10.1016/j.mser.2008.09.002
  • Levchik, S. V., & Weil, E. D. (2008). Developments in phosphorus flame retardants. In Advances in Fire retardantmaterials (pp. 41–66). Woodhead Publishing.
  • Liang, S., Neisius, N. M., & Gaan, S. (2013). Recent developments in flame retardant polymeric coatings. Progress in Organic Coatings, 76(11), 1642–1665. https://doi.org/10.1016/j.porgcoat.2013.07.014
  • Liu, X., & Yu, W. (2006). Evaluating the thermal stability of high performance fibers by TGA. Journal of Applied Polymer Science, 99(3), 937–944. https://doi.org/10.1002/app.22305
  • Meerts, I., Letcher, R. J., Hoving, S., Marsh, G., Bergman, A., Lemmen, J. G., Burg, B., & Brouwer, A. (2001). In vitro estrogenicity of polybrominated diphenyl ethers, hydroxylated PBDEs, and polybrominated bisphenol A compounds. Environmental Health Perspectives, 109(4), 399–407. https://doi.org/10.1289/ehp.01109399
  • Mettler, M. S., Vlachos, D. G., & Dauenhauer, P. J. (2012). Top ten fundamental challenges of biomass pyrolysis for biofuels. Energy & Environmental Science, 5(7), 7797–7809. https://doi.org/10.1039/c2ee21679e
  • Morgan, A. B. (2019). The future of flame retardant polymers – unmet needs and likely new approaches. Polymer Reviews, 59(1), 25–54. https://doi.org/10.1080/15583724.2018.1454948
  • Nawaz, N., Troynikov, O., & Watson, C. (2011). Evaluation of surface characteristics of fabrics suitable for skin layer of firefighters protective clothing. Physics Procedia, 22, 478–486. https://doi.org/10.1016/j.phpro.2011.11.074
  • Neisius, M., Stelzig, T., Liang, S., & Gaan, S. (2014). Flame retardant finishes for textiles. Functional finishes for textiles: Improving comfort, performance and protection. Woodhead Publishing.
  • Quede, A., Mutel, B., Supiot, P., Jama, C., Dessaux, O., & Delobel, R. (2004). Characterization of organosilicon films synthesized by N2-PACVD. Application to fire retardant properties of coated polymers. Surface and Coatings Technology, 180-181, 265–270. https://doi.org/10.1016/j.surfcoat.2003.10.067
  • Schindler, W. D., & Hauser, P. J. (2004). Flame-retardant finishes. Chemical Finishing of Textiles, 98–116.
  • Shete, A. V., Sawant, S. B., & Pangarkar, V. G. (2004). Kinetics of fluid–solid reaction with an insoluble product: Zinc borate by the reaction of boric acid and zinc oxide. Journal of Chemical Technology & Biotechnology, 79(5), 526–532. https://doi.org/10.1002/jctb.1018
  • Stegmaier, T., Mavely, J., & Schneider, P. R. Shishoo (Ed.) (2005). High-performance and high-functional fibres and textiles. In Textiles in sport. Woodhead Publishing, 89–119.
  • Tabuani, D., Bellucci, F., Terenzi, A., & Camino, G. (2012). Flame retarded Thermoplastic Polyurethane (TPU) for cable jacketing application. Polymer degradation and stability, 97(12), 2594–2601.
  • Troitzsch, J. H. (1998). Overview of flame retardants. Chemistry Today, 16.
  • Varghese, N., & Thilagavathi, G. (2015). Development of woven stretch fabrics and analysis on handle, stretch, and pressure comfort. The Journal of the Textile Institute, 106(3), 242–252. https://doi.org/10.1080/00405000.2014.914652
  • Waaijers, S. L., Kong, D., Hendriks, H. S., de Wit, C. A., Cousins, I. T., Westerink, R. H., & Parsons, J. R., David M. Whitacre (Ed.). (2013). Persistence, bioaccumulation, and toxicity of halogen-free flame retardants. In Reviews of environmental contamination and toxicology (pp. 1-71). New York: Springer.
  • Wang, Z., Han, E., & Liu, F. (2007). Influence of nano-TiO2 in thermal behavior of fire-resistant coating. Journal of Materials Science and Technology, 23, 547–550.
  • Weil, E. D., & Levchik, S. V. (2008). Flame retardants in commercial use or development for textiles. Journal of Fire Sciences, 26(3), 243–281. https://doi.org/10.1177/0734904108089485
  • Wimmer, W., Züst, R., & Lee, K. M. (2004). Ecodesign implementation: A systematic guidance on integrating environmental considerations into product development (Vol. 6). Springer Science & Business Media.
  • World Fire Statistics. (2017). International Bulletin of the World Fire Statistics Center.
  • Xie, K., Gao, A., & Zhang, Y. (2013). Flame retardant finishing of cotton fabric based on synergistic compounds containing boron and nitrogen. Carbohydrate Polymers, 98(1), 706–710. https://doi.org/10.1016/j.carbpol.2013.06.014
  • Zhang, Q., Zhang, W., Huang, J., Lai, Y., Xing, T., Chen, G., Jin, G., Liu, H., & Sun, B. (2015). Flame retardance and thermal stability of wool fabric treated by boron containing silica sols. Materials & Design, 85, 796–799. https://doi.org/10.1016/j.matdes.2015.07.163
  • Zhao, X. (2010). Synthesis and application of a durable phosphorus/silicon flame-retardant for cotton. Journal of the Textile Institute, 101(6), 538–546. https://doi.org/10.1080/00405000802563677

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.