236
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Comparisons of tension–tension fatigue behavior between the 3D orthogonal woven and biaxial warp-knitted composites

, ORCID Icon & ORCID Icon
Pages 1249-1257 | Received 13 Apr 2020, Accepted 08 Aug 2020, Published online: 21 Aug 2020

References

  • Callus, P. J., Mouritz, A. P., Bannister, M. K., & Leong, K. H. (1999). Tensile properties and failure mechanisms of 3D woven GRP composites. Composites Part A: Applied Science and Manufacturing, 30(11), 1277–1287. https://doi.org/10.1016/S1359-835X(99)00033-0
  • Chun, H.-J., Kim, H.-W., & Byun, J.-H. (2006). Effects of through-the-thickness stitches on the elastic behavior of multi-axial warp knit fabric composites. Composite Structures, 74(4), 484–494. https://doi.org/10.1016/j.compstruct.2005.05.003
  • Colombo, C., & Vergani, L. (2011). Multi-axial fatigue life estimation of unidirectional GFRP composite. International Journal of Fatigue, 33(8), 1032–1039. https://doi.org/10.1016/j.ijfatigue.2011.01.001
  • Gao, X., Tao, N., Yang, X., Wang, C., & Xu, F. (2019). Quasi-static three-point bending and fatigue behavior of 3-D orthogonal woven composites. Composites Part B: Engineering, 159, 173–183. https://doi.org/10.1016/j.compositesb.2018.09.077
  • Ivanov, D. S., Lomov, S. V., Bogdanovich, A. E., Karahan, M., & Verpoest, I. (2009). A comparative study of tensile properties of non-crimp 3D orthogonal weave and multi-layer plain weave E-glass composites. Part 2: Comprehensive experimental results. Composites Part A: Applied Science and Manufacturing, 40(8), 1144–1157. https://doi.org/10.1016/j.compositesa.2009.04.032
  • Jia, H., & Yang, H. (2016). Effect of shallow angles on compressive strength of biaxial and triaxial laminates. SpringerPlus, 5(1), 2044. https://doi.org/10.1186/s40064-016-3726-8
  • Lee, L., Rudov-Clark, S., Mouritz, A. P., Bannister, M. K., & Herszberg, I. (2002). Effect of weaving damage on the tensile properties of three-dimensional woven composites. Composite Structures, 57(1–4), 405–413. https://doi.org/10.1016/S0263-8223(02)00108-3
  • Lomov, S. V., Bogdanovich, A. E., Ivanov, D. S., Mungalov, D., Karahan, M., & Verpoest, I. (2009). A comparative study of tensile properties of non-crimp 3D orthogonal weave and multi-layer plain weave E-glass composites. Part 1: Materials, methods and principal results. Composites Part A: Applied Science and Manufacturing, 40(8), 1134–1143. https://doi.org/10.1016/j.compositesa.2009.03.012
  • Madej, L., Malinowski, L., Perzynski, K., Mojzeszko, M., Wang, J., Cios, G., Czarnecki, D., & Bala, P. (2019). Considering influence of microstructure morphology of epoxy/glass composite on its behavior under deformation conditions—digital material representation case study. Archives of Civil and Mechanical Engineering, 19(4), 1304–1315. https://doi.org/10.1016/j.acme.2019.07.001
  • Mouritz, A. P. (2008). Tensile fatigue properties of 3D composites with through-thickness reinforcement. Composites Science and Technology, 68(12), 2503–2510. https://doi.org/10.1016/j.compscitech.2008.05.003
  • Padmaraj, N. H., Vijaya, K. M., & Dayananda, P. (2019). Experimental study on the tension-tension fatigue behaviour of glass/epoxy quasi-isotropic composites. Journal of King Saud University - Engineering Sciences, 32, 396–401. https://doi.org/10.1016/j.jksues.2019.04.007
  • Pankow, M., Justusson, B., Riosbaas, M., Waas, A. M., & Yen, C. F. (2019). Effect of fiber architecture on tensile fracture of 3D woven textile composites. Composite Structures, 225, 111139. https://doi.org/10.1016/j.compstruct.2019.111139
  • Rudov-Clark, S., & Mouritz, A. P. (2008). Tensile fatigue properties of a 3D orthogonal woven composite. Composites Part A: Applied Science and Manufacturing, 39(6), 1018–1024. https://doi.org/10.1016/j.compositesa.2008.03.001
  • Saeedifar, M., Ahmadi Najafabadi, M., Mohammadi, K., Fotouhi, M., Hosseini Toudeshky, H., & Mohammadi, R. (2018). Acoustic emission-based methodology to evaluate delamination crack growth under quasi-static and fatigue loading conditions. Journal of Nondestructive Evaluation, 37(1), 1. https://doi.org/10.1007/s10921-017-0454-0
  • Saleh, M. N., Wang, Y., Yudhanto, A., Joesbury, A., Potluri, P., Lubineau, G., & Soutis, C. (2017). Investigating the potential of using off-axis 3D woven composites in composite joints’ applications. Applied Composite Materials, 24(2), 377–396. https://doi.org/10.1007/s10443-016-9529-9
  • Snape, A. E., Turner, J. L., El-Dessouky, H. M., Saleh, M. N., Tew, H., & Scaife, R. J. (2018). Stabilising and trimming 3D woven fabrics for composite preforming applications. Applied Composite Materials, 25(4), 735–746. https://doi.org/10.1007/s10443-018-9717-x
  • Sun, B., Hu, H., & Gu, B. (2007). Compressive behavior of multi-axial multi-layer warp knitted (MMWK) fabric composite at various strain rates. Composite Structures, 78(1), 84–90. https://doi.org/10.1016/j.compstruct.2005.08.011
  • Tan, P., Tong, L., Steven, G. P., & Ishikawa, T. (2000). Behavior of 3D orthogonal woven CFRP composites. Part I. Experimental investigation. Composites Part A: Applied Science and Manufacturing, 31(3), 259–271. https://doi.org/10.1016/S1359-835X(99)00070-6
  • Topal, S., Baiocchi, L., Crocombe, A. D., Ogin, S. L., Potluri, P., Withers, P. J., Quaresimin, M., Smith, P. A., Poole, M. C., & Bogdanovich, A. E. (2015). Late-stage fatigue damage in a 3D orthogonal non-crimp woven composite: An experimental and numerical study. Composites Part A: Applied Science and Manufacturing, 79, 155–163. https://doi.org/10.1016/j.compositesa.2015.08.020
  • Wang, C., Zhong, Y., Bernad Adaikalaraj, P. F., Ji, X., Roy, A., Silberschmidt, V. V., & Chen, Z. (2016). Strength prediction for bi-axial braided composites by a multi-scale modelling approach. Journal of Materials Science, 51(12), 6002–6018. https://doi.org/10.1007/s10853-016-9901-z
  • Xu, D., Ganesan, R., & Hoa, S. V. (2007). Buckling analysis of tri-axial woven fabric composite structures subjected to bi-axial loading. Composite Structures, 78(1), 140–152. https://doi.org/10.1016/j.compstruct.2005.08.021
  • Yang, X., Gao, X., & Ma, Y. (2018). Numerical simulation of tensile behavior of 3D orthogonal woven composites. Fibers and Polymers, 19(3), 641–647. https://doi.org/10.1007/s12221-018-7975-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.