219
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Preparation and characterization of sandwich structure composite with great flexibility and thermal insulation properties

, , &
Pages 2694-2703 | Received 29 May 2021, Accepted 17 Nov 2021, Published online: 28 Dec 2021

References

  • Aksit, M., Zhao, C., Klose, B., Kreger, K., Schmidt, H. W., & Altstädt, V. (2019). Extruded polystyrene foams with enhanced insulation and mechanical properties by a benzene-trisamide-based additive. Polymers, 11(2), 268. https://doi.org/10.3390/polym11020268
  • Batard, A., Duforestel, T., Flandin, L., & Yrieix, B. (2018). Prediction method of the long-term thermal performance of vacuum insulation panels installed in building thermal insulation applications. Energy and Buildings, 178, 1–10. https://doi.org/10.1016/j.enbuild.2018.08.006
  • Gbewonyo, S., Carpenter, A. W., Gause, C. B., Mucha, N. R., & Zhang, L. (2017). Low thermal conductivity carbon fibrous composite nanomaterial enabled by multi-scale porous structure. Materials & Design, 134, 218–225. https://doi.org/10.1016/j.matdes.2017.08.050
  • Gomes, M. G., Flores, C. I., Melo, H., & Soares, A. (2019). Physical performance of industrial and eps and cork experimental thermal insulation renders. Construction and Building Materials, 198, 786–795. https://doi.org/10.1016/j.conbuildmat.2018.11.151
  • Huang, C., Huang, Z., & Wang, Q. (2018). Effect of high‐temperature treatment on the mechanical and thermal properties of phenolic syntactic foams. Polymer Engineering & Science, 58(12), 2200–2209. https://doi.org/10.1002/pen.24835
  • Hung, W. C., Horng, R. S., & Shia, R. E. (2021). Investigation of thermal insulation performance of glass/carbon fiber-reinforced silica aerogel composites. Journal of Sol-Gel Science and Technology, 97(2), 414–418. https://doi.org/10.1007/s10971-020-05444-3
  • Ivdre, A., Abolins, A., Sevastyanova, I., Kirpluks, M., Cabulis, U., & Merijs-Meri, R. (2020). Rigid polyurethane foams with various isocyanate indices based on polyols from rapeseed oil and waste pet. Polymers, 12(4), 738. https://doi.org/10.3390/polym12040738
  • Jiang, S., Uch, B., Agarwal, S., & Greiner, A. (2017). Ultralight, thermally insulating, compressible polyimide fiber assembled sponges. ACS Applied Materials & Interfaces, 9(37), 32308–32315. https://doi.org/10.1021/acsami.7b11045
  • Jiang, S., Zhang, M., Jiang, W., Xu, Q., Yu, J., Liu, L., & Liu, L. (2020). Multiscale nanocelluloses hybrid aerogels for thermal insulation: The study on mechanical and thermal properties. Carbohydrate Polymers, 247, 116701. https://doi.org/10.1016/j.carbpol.2020.116701
  • Jiao, C., Wang, H., & Chen, X. (2019). An efficient flame-retardant and smoke-suppressant agent by coated hollow glass microspheres with ammonium molybdophosphate for thermoplastic polyurethane. Journal of Thermal Analysis and Calorimetry, 137(5), 1579–1589. https://doi.org/10.1007/s10973-019-08044-8
  • Kaddami, H., Bendahoua, D., Bendahou, A., Seantier, B., & Grohens, Y. (2015). Nano-fibrillated cellulose-zeolites based new hybrid composites aerogels with super thermal insulating properties. Industrial Crops & Products, 65, 374–382. https://doi.org/10.1016/j.indcrop.2014.11.012
  • Kang, D. H., Hwang, S. W., Jung, B. N., & Shim, J. K. (2017). Effect of hollow glass microsphere (hgm) on the dispersion state of single-walled carbon nanotube (swnt). Composites Part B: Engineering, 117, 35–42. https://doi.org/10.1016/j.compositesb.2017.02.038
  • Kang, Q., Bao, Y., Li, M., & Ma, J. (2017). Effect of wall thickness of hollow tio2 spheres on properties of polyacrylate film: Thermal insulation, uv-shielding and mechanical property. Progress in Organic Coatings, 112, 153–161. https://doi.org/10.1016/j.porgcoat.2017.04.045
  • Lee, D., Jung, J., Lee, G. H., & Lee, W. l. (2018). Electrospun nanofiber composites with micro-/nano-particles for thermal insulation. Advanced Composite Materials, 28, 193–202. https://doi.org/10.1080/09243046.2018.1478607
  • Lee, Y., Jang, M. G., Choi, K. H., Han, C., & Kim, W. N. (2016). Liquid‐type nucleating agent for improving thermal insulating properties of rigid polyurethane foams by HFC‐365mfc as a blowing agent. Journal of Applied Polymer Science, 133(25), 43997. https://doi.org/10.1002/app.43557
  • Li, M. E., Yan, Y. W., Zhao, H. B., Jian, R. K., & Wang, Y. Z. (2020). A facile and efficient flame-retardant and smoke-suppressant resin coating for expanded polystyrene foams. Composites Part B: Engineering, 185, 107797. https://doi.org/10.1016/j.compositesb.2020.107797
  • Li, X., Peng, C., & Liu, L. (2020). Experimental study of the thermal performance of a building wall with vacuum insulation panels and extruded polystyrene foams. Applied Thermal Engineering, 180(2), 115801. https://doi.org/10.1016/j.applthermaleng.2020.115801
  • Liang, Y. Y., Ding, Y. F., Liu, Y. C., Yang, J. M., & Zhang, H. (2020). Modeling microstructure effect on thermal conductivity of aerogel-based vacuum insulation panels. Heat Transfer Engineering, 41(9–10), 882–895. https://doi.org/10.1080/01457632.2019.1576443
  • Liu, X., Guo, J., Tang, W., Li, H., Gu, X., Sun, J., & Zhang, S. (2019). Enhancing the flame retardancy of thermoplastic polyurethane by introducing montmorillonite nanosheets modified with phosphorylated chitosan. Composites Part A: Applied Science and Manufacturing, 119, 291–298. https://doi.org/10.1016/j.compositesa.2019.02.009
  • Naseeb, N., Mohammed, A., Laoui, T., & Khan, Z. (2019). A novel pan-go-sio2 hybrid membrane for separating oil and water from emulsified mixture. Materials, 12(2), 212. https://doi.org/10.3390/ma12020212
  • Pan, R., Yang, L., Zheng, L., Hao, L., & Li, Y. (2020). Microscopic morphology, thermodynamic and mechanical properties of thermoplastic polyurethane fabricated by selective laser sintering. Materials Research Express, 7(5), 055301. https://doi.org/10.1088/2053-1591/ab8b87
  • Rg, A., Gm, A., & Ba, B. (2019). High specific strength hybrid polypropylene composites using carbon fibre and hollow glass microspheres: Development, characterization and comparison with empirical models. Composites Part B: Engineering, 173, 106875. https://doi.org/10.1016/j.compositesb.2019.05.086
  • Song, J., Chen, C., Yang, Z., Kuang, Y., Li, T., Li, Y., Huang, H., Kierzewski, I., Liu, B., He, S., Gao, T., Yuruker, S. U., Gong, A., Yang, B., & Hu, L. (2018). Highly compressible, anisotropic aerogel with aligned cellulose nanofibers. ACS Nano, 12(1), 140–147. https://doi.org/10.1021/acsnano.7b04246
  • Tao, D., Li, X., Dong, Y., Zhu, Y., Yuan, Y., Ni, Q., Fu, Y., & Fu, S. (2020). Super-low thermal conductivity fibrous nanocomposite membrane of hollow silica/polyacrylonitrile. Composites Science and Technology, 188, 107992. https://doi.org/10.1016/j.compscitech.2020.107992
  • Wang, C., Yin, J., Han, S., Jiao, T., Bai, Z., Zhou, J., Zhang, L., & Peng, Q. M. (2019). Preparation of palladium nanoparticles decorated polyethyleneimine/polycaprolactone composite fibers constructed by electrospinning with highly efficient and recyclable catalytic performances. Catalysts, 9(6), 559. https://doi.org/10.3390/catal9060559
  • Wang, Q., Chen, J., Gui, B., Zhai, T., & Yang, D. (2016). Fabrication and properties of thermal insulating material using hollow glass microspheres bonded by aluminum–chrome–phosphate and tetraethyl orthosilicate. Ceramics International, 42(4), 4886–4892. https://doi.org/10.1016/j.ceramint.2015.12.003
  • Yang, H., Jiang, Y., Liu, H., Xie, D., Wan, C., Pan, H., & Jiang, S. (2018). Mechanical, thermal and fire performance of an inorganic-organic insulation material composed of hollow glass microspheres and phenolic resin. Journal of Colloid and Interface Science, 530, 163–170. https://doi.org/10.1016/j.jcis.2018.06.075
  • Yu, S. Z., Li, X. D., Zou, M. S., Li, Z. R., Wang, S., & Wang, D. H. (2020). Tetrafunctional epoxy resin-based buoyancy materials: Curing kinetics and properties. Polymers, 12(8), 1732. https://doi.org/10.3390/polym12081732
  • Zhou, T. T., He, S., Xin, B. J., Chen, Z. M., & Zhuang, M. Y. (2019). Preparation and characterization of heat-insulating ag/tio2 composite membranes based on magnetron sputtering technology. Journal of Materials Research, 35(5), 1–8. https://doi.org/10.1557/jmr.2019.327
  • Zhuang, J., Ghaffar, S. H., Fan, M., & Corker, J. (2017). Restructure of expanded cork with fumed silica as novel core materials for vacuum insulation panels. Composites Part B: Engineering, 127, 215–221. https://doi.org/10.1016/j.compositesb.2017.06.019
  • Zhuo, T., Chen, Z., Xin, B., Xu, Y., Song, Y., He, S., & Wang, S. (2021). Surface modification of pe/pet by two-step method with graphene and silver nanoparticles for enhanced electrical conductivity. Journal of Industrial Textiles, 0(0), 152808372098589–152808372098521. https://doi.org/10.1177/1528083720985893

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.