243
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Study on finishing and electromagnetic properties of electromagnetic shielding fabric based on multilayer Ti3C2Tx medium

ORCID Icon, , &
Pages 2704-2713 | Received 12 Aug 2021, Accepted 21 Nov 2021, Published online: 02 Dec 2021

References

  • Almirall, O., Fernandez-Garcia, R., & Gil, I. (2021). Wearable metamaterial for electromagnetic radiation shielding. Journal of the Textile Institute, 9. doi: https://doi.org/10.1080/00405000.2021.1940662
  • Cao, M.-S., Cai, Y.-Z., He, P., Shu, J.-C., Cao, W.-Q., & Yuan, J. (2019). 2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding. Chemical Engineering Journal, 359, 1265–1302. https://doi.org/10.1016/j.cej.2018.11.051
  • Cheng, W., Zhang, Y., Tian, W., Liu, J., Lu, J., Wang, B., Xing, W., & Hu, Y. (2020). Highly efficient MXene-coated flame retardant cotton fabric for electromagnetic interference shielding. Industrial & Engineering Chemistry Research, 59(31), 14025–14036. https://doi.org/10.1021/acs.iecr.0c02618
  • Duan, J., Wang, X., Li, Y., & Liu, Z. (2019). Effect of double-layer composite absorbing coating on shielding effectiveness of electromagnetic shielding fabric. Materials Research Express, 6(8), 086109. https://doi.org/10.1088/2053-1591/ab1d2d
  • Enyashin, A. N., & Ivanovskii, A. L. (2013). Structural and electronic properties and stability of MXenes Ti2C and Ti3C2 functionalized by methoxy groups. The Journal of Physical Chemistry C, 117(26), 13637–13643. https://doi.org/10.1021/jp401820b
  • Geng, L., Zhu, P., Wei, Y., Guo, R., Xiang, C., Cui, C., & Li, Y. (2019). A facile approach for coating Ti3C2Tx on cotton fabric for electromagnetic wave shielding. Cellulose, 26(4), 2833–2847. https://doi.org/10.1007/s10570-019-02284-5
  • Ghidiu, M., Lukatskaya, M. R., Zhao, M.-Q., Gogotsi, Y., & Barsoum, M. W. (2014). Conductive two-dimensional titanium carbide ‘clay' with high volumetric capacitance. Nature, 516(7529), 78–U171.
  • Gultekin, B. C. (2018). Evaluation of the electromagnetic shielding effectiveness of carbon-based screen printed polyester fabrics. Fibers and Polymers, 19(2), 313–320.
  • Guo, R. H., Jiang, S. X., Yuen, C. W. M., Ng, M. C. F., & Lan, J. W. (2013). Optimization of electroless nickel plating on polyester fabric. Fibers and Polymers, 14(3), 459–464. https://doi.org/10.1007/s12221-013-0459-y
  • Gupta, K. K., Abbas, S. M., & Abhyankar, A. C. (2021). Effect of yarn composition and fabric weave design on microwave and EMI shielding properties of hybrid woven fabrics. Journal of the Textile Institute. https://doi.org/10.1080/00405000.2021.1954427
  • Han, M., Yin, X., Wu, H., Hou, Z., Song, C., Li, X., Zhang, L., & Cheng, L. (2016). Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band. ACS Applied Materials & Interfaces, 8(32), 21011–21019. https://doi.org/10.1021/acsami.6b06455
  • Hong, Y. K., Lee, C. Y., Jeong, C. K., Lee, D. E., Kim, K., & Joo, J. (2003). Method and apparatus to measure electromagnetic interference shielding efficiency and its shielding characteristics in broadband frequency ranges. Review of Scientific Instruments, 74(2), 1098–1102. https://doi.org/10.1063/1.1532540
  • Hu, Y., Wang, L., Lin, T., Zhao, N., Shi, M., Peng, J., Li, J., Shi, W., & Zhai, M. (2020). Radiation-induced self-assembly of Ti3C2Tx with improved electrochemical performance for supercapacitor. Advanced Materials Interfaces, 7(6), 1901839. https://doi.org/10.1002/admi.201901839
  • Iqbal, A., Sambyal, P., & Koo, C. M. (2020). 2D MXenes for electromagnetic shielding: a review. Advanced Functional Materials, 30(47), 2000883. https://doi.org/10.1002/adfm.202000883
  • Kim, H. J., Kim, S. H., & Park, S. (2018). Effects of the carbon fiber-carbon microcoil hybrid formation on the effectiveness of electromagnetic wave shielding on carbon fibers-based fabrics. Materials, 11(12), 2344. https://doi.org/10.3390/ma11122344
  • Lai, M. F. (2021). polypropylene/carbon fiber composite layered materials: Electromagnetic interference shielding effect and mechanical performance. Fibers and Polymers, 11. https://doi.org/10.1007/s12221-021-0007-0
  • Li, H., & Du, Z. Q. (2019). Preparation of a highly sensitive and stretchable strain sensor of MXene/silver nanocomposite-based yarn and wearable applications. ACS Applied Materials & Interfaces, 11(49), 45930–45938. https://doi.org/10.1021/acsami.9b19242
  • Lin, J.-Y., Lin, M.-C., Lin, Y.-Y., Lin, T. A., Huang, C.-H., Lou, C.-W., & Lin, J.-H. (2021). Reinforcing techniques and property evaluations of electromagnetic shielding effective fabrics based on polypropylene-coated carbon fibers. Fibers and Polymers, 22(3), 658–663. https://doi.org/10.1007/s12221-021-0275-8
  • Liu, Z. (2015). Influence of metal fibre content of blended electromagnetic shielding fabric on shielding effectiveness considering fabric weave. Fibres & Textiles in Eastern Europe, 23(4), 83–87.
  • Liu, Z., & Wang, X. (2020). FDTD numerical calculation of shielding effectiveness of electromagnetic shielding fabric based on warp and weft weave points. IEEE Transactions on Electromagnetic Compatibility, 62(5), 1693–1702. https://doi.org/10.1109/TEMC.2019.2947133
  • Liu, Z., Wang, X., Zhang, Y., & Zhou, Z. (2016). Analysis of surface metal fiber arrangement of electromagnetic shielding fabric and its influence on shielding effectiveness. International Journal of Clothing Science and Technology, 28(2), 191–200. https://doi.org/10.1108/IJCST-08-2015-0091
  • Liu, Y. J., Yu, Y. T., & Zhao, X. M. (2021). The influence of wave-absorbing functional particles on the electromagnetic properties and the mechanical properties of coated fabrics. The Journal of the Textile Institute, 1–21. https://doi.org/10.1080/00405000.2021.1909230
  • Liu, J., Zhang, H.-B., Sun, R., Liu, Y., Liu, Z., Zhou, A., & Yu, Z.-Z. (2017). Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Advanced Materials, 29(38), 1702367. https://doi.org/10.1002/adma.201702367
  • Liu, X., Zhang, L., Yin, X., Ye, F., Liu, Y., & Cheng, L. (2016). Flexible thin SiC fiber fabrics using carbon nanotube modification for improving electromagnetic shielding properties. Materials & Design, 104, 68–75. https://doi.org/10.1016/j.matdes.2016.05.005
  • Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J., Heon, M., Hultman, L., Gogotsi, Y., & Barsoum, M. W. (2011). Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials (Deerfield Beach, Fla.), 23(37), 4248–4253. https://doi.org/10.1002/adma.201102306
  • Ozen, M. S., Ozen, M. S., Usta, I., Yuksek, M., Sancak, E., Sancak, E., & Soin, N. (2018). Investigation of the electromagnetic shielding effectiveness of needle punched nonwoven fabrics produced from stainless steel and carbon fibres. Fibres and Textiles in Eastern Europe, 26(1(127), 94–100. https://doi.org/10.5604/01.3001.0010.5636
  • Palanisamy, S., Tunakova, V., Militky, J., & Wiener, J. (2021). Effect of moisture content on the electromagnetic shielding ability of non-conductive textile structures. Scientific Reports, 11(1), 10. https://doi.org/10.1038/s41598-021-90516-9
  • Pamuk, G. (2021). Electromagnetic shielding effectiveness of carbon yarn-based woven fabrics. Journal of Industrial Textiles. https://doi.org/10.1177/1528083719896769
  • Qing, Y., Zhou, W., Luo, F., & Zhu, D. (2016). Titanium carbide (MXene) nanosheets as promising microwave absorbers. Ceramics International, 42(14), 16412–16416. https://doi.org/10.1016/j.ceramint.2016.07.150
  • Raagulan, K., Braveenth, R., Jang, H. J., Lee, Y. S., Yang, C. ‐M., Kim, B. M., Moon, J. J., & Chai, K. Y. (2018). Fabrication of nonwetting flexible free-standing MXene-carbon fabric for electromagnetic shielding in S-band region. Bulletin of the Korean Chemical Society, 39(12), 1412–1419. https://doi.org/10.1002/bkcs.11616
  • Raagulan, K., Braveenth, R., Jang, H., Seon Lee, Y., Yang, C.-M., Mi Kim, B., Moon, J., & Chai, K. (2018). Electromagnetic shielding by MXene-graphene-PVDF composite with hydrophobic, lightweight and flexible graphene coated fabric. Materials, 11(10), 1803. https://doi.org/10.3390/ma11101803
  • Rajavel, K., Yu, X., Zhu, P., Hu, Y., Sun, R., & Wong, C. (2020). Exfoliation and defect control of two-dimensional few-layer MXene Ti3C2Tx for electromagnetic interference shielding coatings. ACS Applied Materials & Interfaces, 12(44), 49737–49747. https://doi.org/10.1021/acsami.0c12835
  • Ran, J., Gao, G., Li, F.-T., Ma, T.-Y., Du, A., & Qiao, S.-Z. (2017). Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nature Communications, 8(1), 10. https://doi.org/10.1038/ncomms13907
  • Shahzad, F., Alhabeb, M., Hatter, C. B., Anasori, B., Man Hong, S., Koo, C. M., & Gogotsi, Y. (2016). Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science (New York, N.Y.), 353(6304), 1137–1140. https://doi.org/10.1126/science.aag2421
  • Ucar, N., Kayaoğlu, B. K., Bilge, A., Gurel, G., Sencandan, P., & Paker, S. (2018). Electromagnetic shielding effectiveness of carbon fabric/epoxy composite with continuous graphene oxide fiber and multiwalled carbon nanotube. Journal of Composite Materials, 52(24), 3341–3350. https://doi.org/10.1177/0021998318765273
  • Urbankowski, P., Anasori, B., Makaryan, T., Er, D., Kota, S., Walsh, P. L., Zhao, M., Shenoy, V. B., Barsoum, M. W., & Gogotsi, Y. (2016). Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale, 8(22), 11385–11391. https://doi.org/10.1039/c6nr02253g
  • Uzun, S., Han, M., Strobel, C. J., Hantanasirisakul, K., Goad, A., Dion, G., & Gogotsi, Y. (2021). Highly conductive and scalable Ti3C2Tx-coated fabrics for efficient electromagnetic interference shielding. Carbon, 174, 382–389. https://doi.org/10.1016/j.carbon.2020.12.021
  • Wang, X., Liu, Z., Wu, L., Wang, Y., & Su, Y. (2020). Influencing factors and rules of shielding effectiveness of electromagnetic shielding clothing sleeve. International Journal of Clothing Science and Technology, 33(2), 241–253. https://doi.org/10.1108/IJCST-02-2020-0013
  • Wang, X., Liu, Z., & Zhou, Z. (2014). Virtual metal model for fast computation of shielding effectiveness of blended electromagnetic interference shielding fabric. International Journal of Applied Electromagnetics and Mechanics, 44(1), 87–97. https://doi.org/10.3233/JAE-131738
  • Wang, S., Li, D., Zhou, Y., & Jiang, L. (2020). Hierarchical Ti3C2Tx MXene/Ni Chain/ZnO array hybrid nanostructures on cotton fabric for durable self-cleaning and enhanced microwave absorption. ACS Nano, 14(7), 8634–8645. https://doi.org/10.1021/acsnano.0c03013
  • Wang, Z., Yang, L., Zhou, Y., Xu, C., Yan, M., & Wu, C. (2021). NiFe LDH/MXene derivatives interconnected with carbon fabric for flexible electromagnetic wave absorption. ACS Applied Materials & Interfaces, 13(14), 16713–16721. https://doi.org/10.1021/acsami.1c05007
  • Xu, C., Wang, L., Liu, Z., Chen, L., Guo, J., Kang, N., Ma, X.-L., Cheng, H.-M., & Ren, W. (2015). Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nature Materials, 14(11), 1135–1141. https://doi.org/10.1038/nmat4374
  • Yang, Y., Wang, J., Liu, Z., Wang, L., & Wang, Z. (2019). Prediction model and sensitivity analysis of shielding effectiveness of woven fabrics containing stainless steel fibers based on extreme learning machine. Materials Research Express, 6(10), 1065g2. https://doi.org/10.1088/2053-1591/ab4299
  • Yin, G., Wang, Y., Wang, W., Qu, Z., & Yu, D. (2021). A flexible electromagnetic interference shielding fabric prepared by construction of PANI/MXene conductive network via layer-by-layer assembly. Advanced Materials Interfaces, 8(6), 2001893. https://doi.org/10.1002/admi.202001893
  • Zhang, T., Cheng, L., Guo, M., & Xue, W. (2016). Evaluation of electromagnetic shielding and wearability of metal wire composite fabric based on grey clustering analysis. The Journal of the Textile Institute, 107(1), 42–49. https://doi.org/10.1080/00405000.2014.1000015
  • Zheng, X., Shen, J., Hu, Q., Nie, W., Wang, Z., Zou, L., & Li, C. (2021). Vapor phase polymerized conducting polymer/MXene textiles for wearable electronics. Nanoscale, 13(3), 1832–1841. https://doi.org/10.1039/d0nr07433k
  • Zhou, C., Wang, X., Luo, H., Deng, L., Wang, S., Wei, S., Zheng, Y., Jia, Q., & Liu, J. (2019). Interfacial design of sandwich-like CoFe@Ti3C2Tx composites as high efficient microwave absorption materials. Applied Surface Science, 494, 540–550. https://doi.org/10.1016/j.apsusc.2019.07.208
  • Zou, L. H. (2020). Electromagnetic wave absorbing properties of cotton fabric with carbon nanotubes coating. Fibres & Textiles in Eastern Europe, 28(5), 82–90.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.