142
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Research on the design and performance of multilayer textiles with a cocoon-like hierarchy

, &
Pages 2722-2731 | Received 21 Apr 2021, Accepted 24 Nov 2021, Published online: 23 Dec 2021

References

  • Bilisik, K. (2012). Multiaxis three-dimensional weaving for composites: A review. Textile Research Journal, 82(7), 725–743. https://doi.org/10.1177/0040517511435013
  • Blossman, M. B., & Burggren, W. W. (2010). The silk cocoon of the silkworm, Bombyx mori: Macro structure and its influence on transmural diffusion of oxygen and water vapor. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, 155(2), 259–263. https://doi.org/10.1016/j.cbpa.2009.11.007
  • Chen, F. J., Porter, D., & Vollrath, F. (2012). Structure and physical properties of silkworm cocoons. Journal of the Royal Society, Interface, 9(74), 2299–2308. https://doi.org/10.1098/rsif.2011.0887
  • Deng, M., Wang, Y. Y., & Li, P. J. (2018). Effect of air gaps characteristics on thermal protective performance of firefighters’ clothing—A review. International Journal of Clothing Science and Technology, 30(2), 246–267. https://doi.org/10.1108/IJCST-07-2017-0103
  • Durville, D., Baydoun, I., Moustacas, H., Périé, G., & Wielhorski, Y. (2018). Determining the initial configuration and characterizing the mechanical properties of 3D angle-interlock fabrics using finite element simulation. International Journal of Solids and Structures, 154(S1), 97–103. https://doi.org/10.1016/j.ijsolstr.2017.06.026
  • Fan, W., Dang, W. S., Liu, T., Li, J. Z., Xue, L. L., Yuan, L. J., & Dong, J. J. (2019). Fatigue behavior of the 3D orthogonal carbon/glass fibers hybrid composite under three-point bending load. Materials and Design, 183, 108112. https://doi.org/10.1016/j.matdes.2019.108112
  • Guo, Q. W., Zhang, Y. F., Guo, R. Q., Ma, M., & Chen, L. (2020). Influences of weave parameters on the mechanical behavior and fracture mechanisms of multidirectional angle-interlock 3D woven composites. Materials Today Communications, 23, 100886. https://doi.org/10.1016/j.mtcomm.2019.100886
  • Horrocks, N. P. C., Vollrath, F., & Dicko, C. (2013). The silkmoth cocoon as humidity trap and waterproof barrier. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, 164(4), 645–652. https://doi.org/10.1016/j.cbpa.2013.01.023
  • Kamiya, R., Cheeseman, B. A., Popper, P., & Chou, T. W. (2000). Some recent advances in the fabrication and design of three-dimensional textile preforms: A review. Composites Science and Technology, 60(1), 33–47. https://doi.org/10.1016/S0266-3538(99)00093-7
  • Komeili, M., & Milani, A. S. (2012). The effect of meso-level uncertainties on the mechanical response of woven fabric composites under axial loading. Computers and Structures, 90–91, 163–171. https://doi.org/10.1016/j.compstruc.2011.09.001
  • Labanieh, A. R., Liu, Y., Vasiukov, D., Soulat, D., & Panier, S. (2017). Influence of off-axis in-plane yarns on the mechanical properties of 3D composites. Composites Part A: Applied Science and Manufacturing, 98, 45–57. https://doi.org/10.1016/j.compositesa.2017.03.009
  • Ling, S., Qi, Z., Knight, D. P., Huang, Y., Huang, L., Zhou, H., Shao, Z., & Chen, X. (2013). Insight into the structure of single Antheraea pernyi silkworm fibers using synchrotron FTIR microspectroscopy. Biomacromolecules, 14(6), 1885–1892. https://doi.org/10.1021/bm400267m
  • Liu, F.-J., Wang, P., Zhang, Y., Liu, H.-Y., & He, J.-H. (2016). A fractal model for insulation clothings with cocoon-like porous structure. Thermal Science, 20(3), 779–784. https://doi.org/10.2298/TSCI1603779L
  • Liu, T., Fan, W., & Wu, X. Y. (2019). Comparisons of influence of random defects on the impact compressive behavior of three different textile structural composites. Materials and Design, 181, 108073. https://doi.org/10.1016/j.matdes.2019.108073
  • Mandal, S., & Song, G. (2018). Characterizing thermal protective fabrics of firefighters’ clothing in hot surface contact. Journal of Industrial Textiles, 47(5), 633–639. https://doi.org/10.1177/1528083716667258
  • Mandal, S., Song, G., & Gholamreza, F. (2016). A novel protocol to characterize the thermal protective performance of fabrics in hot-water exposures. Journal of Industrial Textiles, 46(1), 279–291. https://doi.org/10.1177/1528083715580522
  • Mandal, S., Song, G., Ackerman, M., Paskaluk, S., & Gholamreza, F. (2013). Characterization of textile fabrics under various thermal exposures. Textile Research Journal, 83(10), 1005–1019. https://doi.org/10.1177/0040517512461707
  • Mounien, R., Fagiano, C., Paulmier, P., Tranquart, B., & Irisarri, F. X. (2017). Experimental characterization of the bearing behavior of 3D woven composites. Composites Part B: Engineering, 116, 369–376. https://doi.org/10.1016/j.compositesb.2016.10.077
  • Omenetto, F. G., & Kaplan, D. L. (2010). New opportunities for an ancient material. Science (New York, N.Y.), 329(5991), 528–531. https://doi.org/10.1126/science.1188936
  • Rossi, R. (2003). Fire fighting and its influence on the body. Ergonomics, 46(10), 1017–1033. https://doi.org/10.1080/0014013031000121968
  • Roy, M., Meena, S. K., Kusurkar, T. S., Singh, S. K., Sethy, N. K., Bhargava, K., Sarkar, S., & Das, M. (2012). Carbondioxide gating in silk cocoon. Biointerphases, 7(1–4), 45–54. https://doi.org/10.1007/s13758-012-0045-7
  • Song, J., Wen, W. D., Cui, H. T., & Li, L. X. (2020). Weft direction tension-tension fatigue responses of layer-to-layer 3D angle-interlock woven composites at room and elevated temperatures. International Journal of Fatigue, 139, 105770. https://doi.org/10.1016/j.ijfatigue.2020.105770
  • Wang, L. J., He, J. Z., Lu, Y. H., Jiang, S. M., & Wang, M. (2018). Interaction effects of washing and abrasion on thermal protective performance of flame retardant fabrics. International Journal of Occupational Safety and Ergonomics, 27(1), 1–32. https://doi.org/10.1080/10803548.2018.1524538
  • Warren, K. C., Lopez-Anido, R. A., & Goering, J. (2015). Experimental investigation of three-dimensional woven composites. Composites Part A: Applied Science and Manufacturing, 73, 242–242. https://doi.org/10.1016/j.compositesa.2015.03.011
  • Xiao, B. Q., Wang, W., Fan, J. T., Chen, H. X., Hu, X. L., Zhao, D. S., Zhang, X., & Ren, W. (2017). Optimization of the fractal-like architecture of porous fibrous materials related to permeability, diffusivity and thermal conductuvuty. Fractals, 25(3), 1750030. https://doi.org/10.1142/S0218348X1750030X
  • Zhang, J., Rajkhowa, R., Li, J. L., Liu, X. Y., & Wang, X. G. (2013). Silkworm cocoon as natural material and structure for thermal insulation. Materials & Design, 49, 842–849. https://doi.org/10.1016/j.matdes.2013.02.006
  • Zhao, H. P., Feng, X. Q., Yu, S. W., Cui, W. Z., & Zou, F. Z. (2005). Mechanical properties of silkworm cocoons. Polymer, 46(21), 9192–9201. https://doi.org/10.1016/j.polymer.2005.07.004
  • Zhu, Q. Y., Xie, M. H., Yang, J., & Li, Y. (2011). A fractal model for the coupled heat and mass transfer in porous fibrous media. International Journal of Heat and Mass Transfer, 54(7–8), 1400–1409. https://doi.org/10.1016/j.ijheatmasstransfer.2010.12.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.