216
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Decolorization potential of reactive dyes by using galvanising industry’s waste (aluminum hydroxide sludge) depending on dye chromophore

, , , & ORCID Icon
Pages 1301-1310 | Received 30 Dec 2021, Accepted 19 Aug 2022, Published online: 03 Oct 2022

References

  • Aljeboree, A. M., Alshirifi, A. N., & Alkaim, A. F. (2017). Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arabian Journal of Chemistry, 10, S3381–S3393. https://doi.org/10.1016/j.arabjc.2014.01.020
  • Amir, M., Kurtan, U., & Baykal, A. (2015). Synthesis and application of magnetically recyclable nanocatalyst Fe3O4@NiCo@Cu in the reduction of azo dyes. Chinese Journal of Catalysis, 36(8), 1280–1286. https://doi.org/10.1016/j.arabjc.2014.01.020
  • Bapat, S., & A., Jaspal, D. K. (2020). Surface-modified water hyacinth (Eichhornia crassipes) over activated carbon for wastewater treatment: A comparative account. South African Journal of Chemistry, 73, 70–80.
  • Baptisttella, A. M. S., Araújo, A. A. D., Barreto, M. C., Madeira, V. S., & Sobrinho, M. A. M. (2019). The use of metal hydroxide sludge (in natura and calcined) for the adsorption of brilliant blue dye in aqueous solution. Environmental Technology, 40(23), 3072–3085. https://doi.org/10.1080/09593330.2018.1466916
  • Basibuyuk, M., & Forster, C. F. (2003). An examination of the adsorption characteristics of a basic dye (Maxilon Red BL-N) on to live activated sludge system. Process Biochemistry, 38(9), 1311–1316. https://doi.org/10.1016/S0032-9592(02)00327-8
  • Chinoune, K., Bentaleb, K., Bouberka, Z., Nadim, A., & Maschke, U. (2016). Adsorption of reactive dyes from aqueous solution by dirty bentonite. Applied Clay Science, 123, 64–75. https://hal.univ-lille.fr/hal-02379819 https://doi.org/10.1016/j.clay.2016.01.006
  • Cifci, D. I., & Meric, S. (2017a). Manganese adsorption by iron impregnated pumice composite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 522, 279–286. https://doi.org/10.1016/j.colsurfa.2017.03.004
  • Cifci, D. I., & Meric, S. (2017b). Single and binary adsorption of iron and manganese in synthetic water using activated pumice composites: Effect of monovalent and divalent ions, desorption and reuse isotherms. Desalination and Water Treatment, 71, 52–61. https://doi.org/10.5004/dwt.2017.20632
  • Du, X., Cui, S., Fang, X., Wang, Q., & Liu, G. (2020). Adsorption of Cd(II), Cu(II), and Zn(II) by granules prepared using sludge from a drinking water purification plant. Journal of Environmental Chemical Engineering, 8(6), 104530. https://doi.org/10.1016/j.jece.2020.104530
  • Dursun, A. Y., Tepe, O., & Dursun, G. (2013). Use of carbonised beet pulp carbon for removal of Remazol Turquoise Blue-G 133 from aqueous solution. Environmental Science and Pollution Research İnternational, 20(1), 431–442. https://doi.org/10.1007/s11356-012-0946-5
  • El Ghazi, I., Elamrani, M. K., & Mansour, M. (2003). Photocatalytic oxidation of the textile dye Basic Red 18 with irradiated titanium dioxide. Toxicological and Environmental Chemistry, 85(1–3), 1–6. https://doi.org/10.1080/02772240310001644980
  • Ghime, D., & Ghosh, P. (2020). Advanced oxidation processes: A powerful treatment option for the removal of recalcitrant organic compounds. In Advanced oxidation processes - Applications, trends, and prospects. IntechOpen. https://doi.org/10.5772/intechopen.90192
  • Golder, A. K., Samanta, A. N., & Ray, S. (2006). Anionic reactive dye removal from aqueous solution using a new adsorbent—Sludge generated in removal of heavy metal by electrocoagulation. Chemical Engineering Journal, 122(1–2), 107–115. https://doi.org/10.1016/j.cej.2006.06.003
  • Güneş, E., & Kaygusuz, T. (2015). Adsorption of Reactive Blue 222 onto an industrial solid waste included Al(III) hydroxide: pH, ionic strength, isotherms, and kinetics studies. Desalination and Water Treatment, 53(9), 2510–2517. https://doi.org/10.1080/19443994.2013.867414
  • Gupta, S. S., & Bhattacharyya, K. (2011). Kinetics of adsorption of metal ions on inorganic materials: A review. Advances in Colloid and İnterface Science, 162(1–2), 39–58. https://doi.org/10.1016/j.cis.2010.12.004
  • Hai, C., Zhang, L., Zhou, Y., Ren, X., Liu, J., Zeng, J., & Ren, H. (2018). Phase transformation and morphology evolution characteristics of hydrothermally prepared boehmite particles. Journal of Inorganic and Organometallic Polymers and Materials, 28(3), 643–650. https://doi.org/10.1007/s10904-017-0756-9
  • Krishnan, S., Rawindran, H., Sinnathambi, C. M., & Lim, J. W. (2017). Comparison of various advanced oxidation processes used in remediation of industrial wastewater laden with recalcitrant pollutants. IOP Conference Series: Materials Science and Engineering, 206, 012089. https://doi.org/10.1088/1757-899X/206/1/012089
  • Li, Y., Gao, B., Wu, T., Wang, B., & Li, X. (2009). Adsorption properties of aluminum magnesium mixed hydroxide for the model anionic dye Reactive Brilliant Red K-2BP. Journal of Hazardous Materials, 164(2–3), 1098–1104. https://doi.org/10.1016/j.jhazmat.2008.09.009
  • Ma, Q., & Wang, L. (2015). Adsorption of Reactive Blue 21 onto functionalized cellulose under ultrasonic pretreatment: Kinetic and equilibrium study. Journal of the Taiwan Institute of Chemical Engineers, 50, 229–235. https://doi.org/10.1016/j.jtice.2014.12.018
  • Magdy, Y. H., & Altaher, H. (2018). Kinetic analysis of the adsorption of dyes from high strength wastewater on cement kiln dust. Journal of Environmental Chemical Engineering, 6(1), 834–841. https://doi.org/10.1016/j.jece.2018.01.009
  • Netpradit, S., Thiravetyan, P., & Towprayoon, S. (2003). Application of ‘waste’ metal hydroxide sludge for adsorption of azo reactive dyes. Water Research, 37(4), 763–772. https://doi.org/10.1016/S0043-1354(02)00375-5
  • Netpradit, S., Thiravetyan, P., & Towprayoon, S. (2004). Adsorption of three azo reactive dyes by metal hydroxide sludge: Effect of temperature, pH, and electrolytes. Journal of Colloid and İnterface Science, 270(2), 255–261. https://doi.org/10.1016/j.jcis.2003.08.073
  • Ngadi, N., Chiek Ee, C., & Yusoff, N. A. (2013). Removal of methylene blue dye by using eggshell powder. Jurnal Teknologi, 65(1), 63–71. https://doi.org/10.11113/jt.v65.1648
  • Qi, Y., Li, J., & Wang, L. (2013). Removal of Remazol Turquoise Blue G-133 from aqueous medium using functionalized cellulose from recycled newspaper fiber. Industrial Crops and Products, 50, 15–22. https://doi.org/10.1016/j.indcrop.2013.07.031
  • Orfão, J. J. M., Silva, A. I. M., Pereira, J. C. V., Barata, S. A., Fonseca, I. M., Faria, P. C. C., & Pereira, M. F. R. (2006). Adsorption of a reactive dye on chemically modified activated carbons - Influence of pH. Journal of Colloid and İnterface Science, 296(2), 480–489. https://doi.org/10.1016/j.jcis.2005.09.063
  • Rashed, M. N. (2013). Adsorption technique for the removal of organic pollutants from water and wastewater. In M.N. Rashed (Ed.), Organic pollutants - Monitoring, risk and treatment. IntechOpen. https://doi.org/10.5772/55953
  • Santos, S. C. R., Vilar, V. J. P., & Boaventura, R. A. R. (2008). Waste metal hydroxide sludge as adsorbent for a reactive dye. Journal of Hazardous Materials, 153(3), 999–1008. https://doi.org/10.1016/j.jhazmat.2007.09.050
  • Shammas, N. K., Yang, J. Y., Yuan, P. C., & Hung, Y. T. (2005). Chemical oxidation. In L. K. Wang, Y. T. Hung, & N. K. Shammas (Eds.), Physicochemical treatment processes. Handbook of environmental engineering (Vol. 3). Humana Press. https://doi.org/10.1385/1-59259-820-x:229
  • Sun, M., Zhang, P., Wu, D., & Frost, R. L. (2017). Novel approach to fabricate organo-LDH hybrid by the intercalation of sodium hexadecyl sulfate into tricalcium aluminate. Applied Clay Science, 140, 25–30. https://doi.org/10.1016/j.clay.2017.01.026
  • Toor, M., & Jin, B. (2012). Adsorption characteristics, isotherm, kinetics, and diffusion of modified natural bentonite for removing diazo dye. Chemical Engineering Journal, 187, 79–88. https://doi.org/10.1016/j.cej.2012.01.089
  • Ucar, B., Guvenc, A., & Mehmetoglu, U. (2011). Use of aluminium hydroxide sludge as adsorbents for the removal of reactive dyes: Equilibrium, thermodynamic, and kinetic Studies. Hydrology Current Research, 2(2), 1–8. https://doi.org/10.4172/2157-7587.1000112
  • Wang, J., Zhang, J. N., Zhang, Y., Liu, J., Xiao, X., Meng, K., Chu, B., Wang, C., & Chu, P. K. (2020). Multiple flocculant prepared with dealkalized red mud and fly ash: Properties and characterization. Journal of Water Process Engineering, 34, 101173–101178. https://doi.org/10.1016/j.jwpe.2020.101173
  • World Dye Variety. (2021). Retrieved May 5, 2021, from http://www.worlddyevariety.com/reactive-dyes/reactive-red-23.htmlhttp://www.worlddyevariety.com/reactive-dyes/reactive-red-239.html
  • Yıldız, A., Güneş, E., Amir, M., & Baykal, A. (2017). Adsorption of industrial Acid Red 114 onto Fe3O4@histidine magnetic nanocomposite. Desalınatıon and Water Treatment, 60, 262–268. https://doi.org/10.5004/dwt.2017.0295

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.