205
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Preparation, structure and properties of bamboo charcoal and its modified polyester fiber

, , &
Pages 1392-1402 | Received 02 Jun 2022, Accepted 26 Aug 2022, Published online: 24 Sep 2022

References

  • Anca-Couce, A. (2016). Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis. Progress in Energy and Combustion Science, 53, 41–79. https://doi.org/10.1016/j.pecs.2015.10.002
  • Beesley, L., Moreno-Jimenez, E., & Gomez-Eyles, J. L. (2010). Effects of biochar and green waste compost amendments on mobility, bioavailability, and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environmental Pollution, 158(6), 2282–2287. https://doi.org/10.1016/j.envpol.2010.02.003
  • Chen, B., Zhou, D., & Zhu, L. (2008). Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochar of pine needles with different pyrolytic temperatures. Environmental Science & Technology, 42(14), 5137–5143. https://doi.org/10.1021/es8002684
  • Chen, H., Chen, X., Qin, Y., Wei, J., & Liu, H. (2017). Effect of torrefaction on the properties of rice straw high temperature pyrolysis char: Pore structure aromaticity and gasification activity. Bioresource Technology, 228, 241–249. https://doi.org/10.1016/j.biortech.2016.12.074
  • Chen, Y., Yang, H., Wang, X., Zhang, S., & Chen, H. (2012). Biomass-based pyrolytic poly generation system on cotton stalk pyrolysis: Influence of temperature. Bioresource Technology, 107, 411–418. [Database] https://doi.org/10.1016/j.biortech.2011.10.074
  • Chen, Z., Chen, B., & Chiou, C. (2012). Fast and slow rates of naphthalene sorption to biochars produced at different temperatures. Environmental Science & Technology, 46(20), 11104–11111.
  • Collard, F., & Blin, J. (2014). A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renewable and Sustainable Energy Reviews, 38, 594–608. https://doi.org/10.1016/j.rser.2014.06.013
  • Damm, C., Munstedt, H., & Rosch, A. (2008). The antimicrobial efficacy of polyamide 6/silver-nano- and microcomposites. Materials Chemistry and Physics, 108(1), 61–66. https://doi.org/10.1016/j.matchemphys.2007.09.002
  • Das, D., Samal, D., & Bc, M. (2015). Preparation of activated carbon from green coconut shell and its characterization. Journal of Chemical Engineering and Process Technology, 6(5), 1000248.
  • Guo, Z., Wu, J., Zhang, Y., Wang, F., Guo, Y., Chen, K., & Liu, H. (2020). Characteristics of biomass charcoal briquettes and pollutant emission reduction for sulfur and nitrogen during combustion. Fuel, 272, 117632–117638. https://doi.org/10.1016/j.fuel.2020.117632
  • Ho, M. P., Lau, K. T., Wang, H., & Hui, D. (2015). Improvement on the properties of polylactic acid (PLA) using bamboo charcoal particles. Composites Part B: Engineering, 81, 14–25. https://doi.org/10.1016/j.compositesb.2015.05.048
  • Huang, J., Tang, L., Zhang, S., Li, J., & Wang, C. (2019). Preparation and properties of reflective heating polyethylene terephthalate fiber. Materials Science Forum, 944, 515–520. https://doi.org/10.4028/www.scientific.net/MSF.944.515
  • Inyang, M., Gao, B., Zimmerman, A., Zhang, M., & Chen, H. (2014). Synthesis, characterization and dye sorption ability of carbon nanotube-biochar nanocomposites. Chemical Engineering Journal, 236, 39–46. https://doi.org/10.1016/j.cej.2013.09.074
  • Isa, S., Ramil, M., Halin, D., Anhar, N., & Hambali, N. (2017). Different carbonization process of bamboo charcoal using Gigantochloa albociliata. 3rd Electronic and GreenMaterial. American Institute of Physics Conference Proceedings, 1885, 20–226.
  • Joan, N., & Megersa, D. (2021). Activated bamboo charcoal in water treatment: A mini-review. Materials Today: Proceedings, 11, 167–170.
  • Larciprete, M. C., Paoloni, S., Orazi, N., Mercuri, F., Orth, M., Gloy, Y., Centini, M., Li Voti, R., & Sibilia, C. (2019). Infrared emissivity characterization of carbon nanotubes dispersed poly (ethylene terephthalate) fiber. International Journal of Thermal Sciences, 146, 106109. https://doi.org/10.1016/j.ijthermalsci.2019.106109
  • Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota-a review. Soil Biology and Biochemistry, 43(9), 1812–1836. https://doi.org/10.1016/j.soilbio.2011.04.022
  • Li, S., Xu, Y., Jing, X., Yilmaz, G., Li, D., & Turng, L. (2020). Effect of carbonization temperature on mechanical properties and biocompatibility of biochar/ultra-high molecular weight polyethylene composites. Composites Part B: Engineering, 196, 108–120.
  • Li, W., & Zhu, Y. (2014). Structural characteristics of coal vitrinite during pyrolysis. Energy & Fuels, 28(6), 3645–3654. https://doi.org/10.1021/ef500300r
  • Li, X., Lei, B., Lin, Z., Huang, L., Tan, S., & Cai, X. (2014). The utilization of bamboo charcoal enhances wood plastic composites with excellent mechanical and thermal properties. Materials and Design, 53, 419–424. https://doi.org/10.1016/j.matdes.2013.07.028
  • Lin, J., Huang, C., Lin, Z., & Lou, C. (2016). Far-infrared emissive polypropylene/wood flour wood plastic composites: Manufacturing technique and property evaluations. Journal of Composite Materials, 50(15), 2099–2109. https://doi.org/10.1177/0021998315602137
  • Lin, S., Hsu, L., Chou, C., Jhang, J., & Wu, P. (2014). Carbonization process of Moso bamboo (Phyllostachys pubescens) charcoal and its governing thermodynamics. Journal of Analytical and Applied Pyrolysis, 79, 10–16.
  • Liu, W., Jiang, H., & Yu, H. (2015). Development of biochar-based functional materials: Toward a sustainable platform carbon material. Chemical Reviews, 115(22), 12251–12285. https://doi.org/10.1021/acs.chemrev.5b00195
  • Luo, S., Jiang, X., & Sun, K. (2005). Effects of nucleating agents on nonisothermal crystallization kinetics of polyethylene terephthalate. China Plastics, 19(7), 21–25.
  • Olsson, J., Jaglid, U., Pettersson, J., & Hald, P. (1997). Alkali metal emission during pyrolysis of biomass. Energy & Fuels, 11(4), 779–784. https://doi.org/10.1021/ef960096b
  • Patwardhan, P. R., Dalluge, D. L., Shanks, B. H., & Brown, R. C. (2011). Distinguishing primary, and secondary reactions of cellulose pyrolysis. Bioresource Technology, 102(8), 5265–5269.
  • Ramirez-Rico, J., Gutierrez-Pardo, A., Martinez-Fernandez, J., Popov, V., & Orlova, T. (2016). Thermal conductivity of Fe graphitized wood derived carbon. Materials and Design, 99, 528–534. https://doi.org/10.1016/j.matdes.2016.03.070
  • Rath, J., & Staudinger, G. (2001). Cracking reactions of tar from pyrolysis of spruce wood. Fuel, 80(10), 1379–1389. https://doi.org/10.1016/S0016-2361(01)00016-3
  • Ritesh, K., Jayashri, G., & Shakti, C. (2021). Combustion behaviors of molded bamboo charcoal: Influence of pyrolysis temperatures. Composites Part B Engineering, 217(108846), 1–9.
  • Song, Z., Shang, G., Xi, Y., & Bo, X. (2003). Carbonization mechanism of bamboo (Phyllostachys) by means of Fourier transform infrared and elemental analysis. Forest Research, 14(1), 75–79.
  • Wang, Q., Chen, L., & Wang, Q. (2012). Producing process of multi-functional PET fiber and fabrics. China Textile Leader, 3, 64–66.
  • Wang, Y., Gao, J., Ma, Y., & Agarwal, U. S. (2006). Study on mechanic Ma al properties, thermal stability, and crystallization behavior of PET/MMT nanocomposites[J]. Composites Part B: Engineering, 37(6), 399–407. https://doi.org/10.1016/j.compositesb.2006.02.014
  • Wu, X., Gao, W., Shen, X., Liu, W., & Du, W. (2020). Preparation and characterization of Taichi masterbatch/polyester functional composite fiber. Textile Research Journal, 90(7–8), 731–743. https://doi.org/10.1177/0040517519878796
  • Xu, Y., Zhou, H., & Liu, J. (2019). Influence of bamboo charcoal content on the property of modified bamboo fiber [J]. Cotton Textile Technology, 47(9), 28–34.
  • Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose, and lignin pyrolysis. Fuel, 86(12–13), 1781–1788. https://doi.org/10.1016/j.fuel.2006.12.013
  • Yang, Y., & Yi, C. (2019). Surface modification of TiO2 for the preparation of full dull polyamide-6 polymers. Journal of Materials Science, 54(13), 9456–9465. https://doi.org/10.1007/s10853-019-03549-x
  • Zhang, X., Yang, W., & Blasiak, W. (2012). Thermal decomposition mechanism of levoglucosan during cellulose pyrolysis. Journal of Analytical and Applied Pyrolysis, 96, 110–119. https://doi.org/10.1016/j.jaap.2012.03.012
  • Zhao, Y., Lin, S., Choi, J. W., Bediako, J. K., Song, M. H., Kim, J. A., Cho, C. W., & Yun, Y. S. (2019). Prediction of adsorption properties for ionic and neutral pharmaceuticals and pharmaceutical intermediates on activated charcoal from aqueous solution via LFER model. Chemical Engineering Journal and the Biochemical Engineering Journal, 362, 199–206. https://doi.org/10.1016/j.cej.2019.01.031
  • Zhao, Y., Shen, L., & Wu, H. (2017). Test and analysis of far-infrared performance of bamboo-charcoal modified polyester fiber woven fabric. Synthetic Fiber in China, 46(9), 50–52.
  • Zheng, A., Zhao, Z., Chang, S., Huang, Z., He, F., & Li, H. (2012). Effect of torrefaction temperature on product distribution from two-staged pyrolysis of biomass. Energy & Fuels, 26(5), 2968–2974. https://doi.org/10.1021/ef201872y
  • Zheng, H., & Wu, J. (2007). Preparation crysrallization and spinnability of poly(ethyleneterephthalate)/silica nanocomposites. Journal of Applied Polymer Science, 103(4), 2564–2568. https://doi.org/10.1002/app.25132
  • Zhou, X., Li, W., Mabon, R., & Broadbelt, L. J. (2017). A critical review on hemicellulose pyrolysis [J]. Energy Technology, 5(1), 52–79. https://doi.org/10.1002/ente.201600327
  • Zobel, N., & Anca-Couce, A. (2013). Slow pyrolysis of wood particles: Characterization of volatiles by laser-induced fluorescence. Proceedings of the Combustion Institute, 34(2), 2355–2362. https://doi.org/10.1016/j.proci.2012.06.130

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.