719
Views
7
CrossRef citations to date
0
Altmetric
Review

Protein–based electrospun nanofibers: electrospinning conditions, biomedical applications, prospects, and challenges

ORCID Icon, , &
Pages 1592-1617 | Received 29 May 2022, Accepted 19 Sep 2022, Published online: 02 Nov 2022

References

  • Adhya, A., Bain, J., Ray, O., Hazra, A., Adhikari, S., Dutta, G., Ray, S., & Majumdar, B. K. (2014). Healing of burn wounds by topical treatment: A randomized controlled comparison between silver sulfadiazine and nano-crystalline silver. Journal of Basic and Clinical Pharmacy, 6(1), 29–34. https://doi.org/10.4103/0976-0105.145776
  • Agarwal, S., Wendorff, J. H., & Greiner, A. (2008). Use of electrospinning technique for biomedical applications. Polymer, 49(26), 5603–5621. https://doi.org/10.1016/j.polymer.2008.09.014
  • Aguilar-Vázquez, G., Ortiz-Frade, L., Figueroa-Cárdenas, J., López-Rubio, A., & Mendoza, S. (2020). Electrospinnability study of pea (Pisum sativum) and common bean (Phaseolus vulgaris L.) using the conformational and rheological behavior of their protein isolates. Polymer Testing, 81, 106217. https://doi.org/10.1016/j.polymertesting.2019.106217
  • Aguirre-Chagala, Y. E., Altuzar, V., León-Sarabia, E., Tinoco-Magaña, J. C., Yañez-Limón, J. M., & Mendoza-Barrera, C. (2017). Physicochemical properties of polycaprolactone/collagen/elastin nanofibers fabricated by electrospinning. Materials Science & Engineering. C, Materials for Biological Applications, 76, 897–907. https://doi.org/10.1016/j.msec.2017.03.118
  • Akhmetova, A., Lanno, G.-M., Kogermann, K., Malmsten, M., Rades, T., & Heinz, A. (2020). Highly elastic and water stable zein microfibers as a potential drug delivery system for wound healing. Pharmaceutics, 12(5), 458. https://doi.org/10.3390/pharmaceutics12050458
  • Alhusein, N., Blagbrough, I. S., Beeton, M. L., Bolhuis, A., & De Bank, P. A. (2016). Electrospun zein/PCL fibrous matrices release tetracycline in a controlled manner, killing Staphylococcus aureus both in biofilms and ex vivo on pig skin, and are compatible with human skin cells. Pharmaceutical Research, 33(1), 237–246. https://doi.org/10.1007/s11095-015-1782-3
  • Ali, A., Islam, S. M., Mohebbullah, M., Uddin, M. N., Hossain, M. T., Saha, S. K., & Jamal, M. S. I. (2021). Antibacterial electrospun nanomat from nigella/PVA system embedded with silver. The Journal of the Textile Institute, 112(4), 561–567. https://doi.org/10.1080/00405000.2020.1768015
  • Ali, A., Mohebbullah, M., Shahid, M. A., Alam, S., Uddin, M. N., Miah, M. S., Jamal, M. S. I., & Khan, M. S. (2021). PVA-Nigella sativa nanofibrous mat: Antibacterial efficacy and wound healing potentiality. The Journal of the Textile Institute, 112(10), 1611–1621. https://doi.org/10.1080/00405000.2020.1831168
  • Ali, S., Khatri, Z., Oh, K. W., Kim, I.-S., & Kim, S. H. (2014). Zein/cellulose acetate hybrid nanofibers: Electrospinning and characterization. Macromolecular Research, 22(9), 971–977. https://doi.org/10.1007/s13233-014-2136-4
  • Alipour, A., & Kalashgarani, M. Y. (2022). Nano protein and peptides for drug delivery and anticancer agents. Advances in Applied NanoBio-Technologies, 3(1), 60–64.
  • Amiraliyan, N., Nouri, M., & Kish, M. H. (2009). Effects of some electrospinning parameters on morphology of natural silk‐based nanofibers. Journal of Applied Polymer Science, 113(1), 226–234. https://doi.org/10.1002/app.29808
  • Aras, O., & Kazanci, M. (2015). Production of collagen micro-and nanofibers for potential drug-carrier systems. Journal of Enzyme Inhibition and Medicinal Chemistry, 30(6), 1013–1016. https://doi.org/10.3109/14756366.2014.976567
  • Ashtikar, M., & Wacker, M. G. (2018). Nanopharmaceuticals for wound healing–lost in translation? Advanced Drug Delivery Reviews, 129, 194–218. https://doi.org/10.1016/j.addr.2018.03.005
  • Atiyeh, B. S., Costagliola, M., Hayek, S. N., & Dibo, S. A. (2007). Effect of silver on burn wound infection control and healing: Review of the literature. Burns: Journal of the International Society for Burn Injuries, 33(2), 139–148. https://doi.org/10.1016/j.burns.2006.06.010
  • Aytac, Z., & Uyar, T. (2022). Electrospun nanofibers for drug delivery applications. Applications of Polymer Nanofibers, 202–254. https://doi.org/10.1002/9781119267713.ch6
  • Ayutsede, J., Gandhi, M., Sukigara, S., Ye, H., Hsu, C-m., Gogotsi, Y., & Ko, F. (2006). Carbon nanotube reinforced Bombyx mori silk nanofibers by the electrospinning process. Biomacromolecules, 7(1), 208–214. https://doi.org/10.1021/bm0505888
  • Baghersad, S., Bahrami, S. H., Mohammadi, M. R., Mojtahedi, M. R. M., & Milan, P. B. (2018). Development of biodegradable electrospun gelatin/aloe-vera/poly (ε-caprolactone) hybrid nanofibrous scaffold for application as skin substitutes. Materials Science and Engineering: C, 93, 367–379.
  • Bajakova, J., Chaloupek, J., Lukáš, D., Lacarin, M. (2011). Drawing—the production of individual nanofibers by experimental method. Proceedings of the 3rd International Conference on Nanotechnology-Smart Materials (NANOCON’11).
  • Bak, S. Y., Yoon, G. J., Lee, S. W., & Kim, H. W. (2016). Effect of humidity and benign solvent composition on electrospinning of collagen nanofibrous sheets. Materials Letters, 181, 136–139. https://doi.org/10.1016/j.matlet.2016.06.019
  • Basar, A., Castro, S., Torres-Giner, S., Lagaron, J., & Sasmazel, H. T. (2017). Novel poly (ε-caprolactone)/gelatin wound dressings prepared by emulsion electrospinning with controlled release capacity of Ketoprofen anti-inflammatory drug. Materials Science & Engineering. C, Materials for Biological Applications, 81, 459–468. https://doi.org/10.1016/j.msec.2017.08.025
  • Baumgarten, P. K. (1971). Electrostatic spinning of acrylic microfibers. Journal of Colloid and Interface Science, 36(1), 71–79. https://doi.org/10.1016/0021-9797(71)90241-4
  • Bhardwaj, N., & Kundu, S. C. (2010). Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, 28(3), 325–347. https://doi.org/10.1016/j.biotechadv.2010.01.004
  • Biranje, S., Madiwale, P., & Adivarekar, R. (2019). Porous electrospun Casein/PVA nanofibrous mat for its potential application as wound dressing material. Journal of Porous Materials, 26(1), 29–40. https://doi.org/10.1007/s10934-018-0602-7
  • Bölgen, N., Demir, D., Aşık, M., Sakım, B., & Vaseashta, A. (2022). Introduction and fundamentals of electrospinning. In Electrospun nanofibers (pp. 3–34). Springer.
  • Bondarenko, O., Juganson, K., Ivask, A., Kasemets, K., Mortimer, M., & Kahru, A. (2013). Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: A critical review. Archives of Toxicology, 87(7), 1181–1200. https://doi.org/10.1007/s00204-013-1079-4
  • Bose, S., & Tarafder, S. (2012). Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: A review. Acta Biomaterialia, 8(4), 1401–1421. https://doi.org/10.1016/j.actbio.2011.11.017
  • Brouwer, C. P., Rahman, M., & Welling, M. M. (2011). Discovery and development of a synthetic peptide derived from lactoferrin for clinical use. Peptides, 32(9), 1953–1963. https://doi.org/10.1016/j.peptides.2011.07.017
  • Buchko, C. J., Chen, L. C., Shen, Y., & Martin, D. C. (1999). Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer, 40(26), 7397–7407. https://doi.org/10.1016/S0032-3861(98)00866-0
  • Bugatti, V., Vertuccio, L., Viscusi, G., & Gorrasi, G. (2018). Antimicrobial membranes of bio-based PA 11 and HNTs filled with lysozyme obtained by an electrospinning process. Nanomaterials, 8(3), 139. https://doi.org/10.3390/nano8030139
  • Bürck, J., Heissler, S., Geckle, U., Ardakani, M. F., Schneider, R., Ulrich, A. S., & Kazanci, M. (2013). Resemblance of electrospun collagen nanofibers to their native structure. Langmuir: The ACS Journal of Surfaces and Colloids, 29(5), 1562–1572. https://doi.org/10.1021/la3033258
  • Buschle-Diller, G., Hawkins, A., & Cooper, J. (2006). Electrospun nanofibers from biopolymers and their biomedical applications. In Modified fibers with medical and specialty applications (pp. 67–80). Springer.
  • Cai, Z.-x., Mo, X.-m., Zhang, K.-h., Fan, L.-p., Yin, A.-l., He, C.-l., & Wang, H.-s. (2010). Fabrication of chitosan/silk fibroin composite nanofibers for wound-dressing applications. International Journal of Molecular Sciences, 11(9), 3529–3539. https://doi.org/10.3390/ijms11093529
  • Cameron, W. J. (1978). A new topical hemostatic agent in gynecologic surgery. Obstetrics and Gynecology, 51(1), 118–122.
  • Cao, H., Chen, X., Huang, L., & Shao, Z. (2009). Electrospinning of reconstituted silk fiber from aqueous silk fibroin solution. Materials Science and Engineering: C, 29(7), 2270–2274. https://doi.org/10.1016/j.msec.2009.05.012
  • Cappello, J., & McGrath, K. P. (1994). Spinning of protein polymer fibers.
  • Carlisle, C. R., Coulais, C., & Guthold, M. (2010). The mechanical stress–strain properties of single electrospun collagen type I nanofibers. Acta Biomaterialia, 6(8), 2997–3003. https://doi.org/10.1016/j.actbio.2010.02.050
  • Cestari, M., Muller, V., Rodrigues, J. H. d S., Nakamura, C. V., Rubira, A. F., & Muniz, E. C. (2014). Preparing silk fibroin nanofibers through electrospinning: Further heparin immobilization toward hemocompatibility improvement. Biomacromolecules, 15(5), 1762–1767. https://doi.org/10.1021/bm500132g
  • Chakrapani, V. Y., Gnanamani, A., Giridev, V., Madhusoothanan, M., & Sekaran, G. (2012). Electrospinning of type I collagen and PCL nanofibers using acetic acid. Journal of Applied Polymer Science, 125(4), 3221–3227. https://doi.org/10.1002/app.36504
  • Chen, J.-P., Chen, S.-H., & Lai, G.-J. (2012). Preparation and characterization of biomimetic silk fibroin/chitosan composite nanofibers by electrospinning for osteoblasts culture. Nanoscale Research Letters, 7(1), 1–11. https://doi.org/10.1186/1556-276X-7-170
  • Chen, R., Huang, C., Ke, Q., He, C., Wang, H., & Mo, X. (2010). Preparation and characterization of coaxial electrospun thermoplastic polyurethane/collagen compound nanofibers for tissue engineering applications. Colloids and Surfaces. B, Biointerfaces, 79(2), 315–325. https://doi.org/10.1016/j.colsurfb.2010.03.043
  • Chen, X., & Schluesener, H. J. (2008). Nanosilver: A nanoproduct in medical application. Toxicology Letters, 176(1), 1–12. https://doi.org/10.1016/j.toxlet.2007.10.004
  • Chen, Z., Wang, P., Wei, B., Mo, X., & Cui, F. (2010). Electrospun collagen–chitosan nanofiber: A biomimetic extracellular matrix for endothelial cell and smooth muscle cell. Acta Biomaterialia, 6(2), 372–382. https://doi.org/10.1016/j.actbio.2009.07.024
  • Cheng, C., Li, S., Thomas, A., Kotov, N. A., & Haag, R. (2017). Functional graphene nanomaterials based architectures: Biointeractions, fabrications, and emerging biological applications. Chemical Reviews, 117(3), 1826–1914. https://doi.org/10.1021/acs.chemrev.6b00520
  • Chevallay, B., & Herbage, D. (2000). Collagen-based biomaterials as 3D scaffold for cell cultures: Applications for tissue engineering and gene therapy. Medical & Biological Engineering & Computing, 38(2), 211–218. https://doi.org/10.1007/BF02344779
  • Cho, D., Netravali, A. N., & Joo, Y. L. (2012). Mechanical properties and biodegradability of electrospun soy protein Isolate/PVA hybrid nanofibers. Polymer Degradation and Stability, 97(5), 747–754. https://doi.org/10.1016/j.polymdegradstab.2012.02.007
  • Cho, D., Nnadi, O., Netravali, A., & Joo, Y. L. (2010). Electrospun hybrid soy protein/PVA fibers. Macromolecular Materials and Engineering, 295(8), 763–773. https://doi.org/10.1002/mame.201000161
  • Choi, Y. S., Hong, S. R., Lee, Y. M., Song, K. W., Park, M. H., & Nam, Y. S. (1999). Study on gelatin-containing artificial skin: I. Preparation and characteristics of novel gelatin-alginate sponge. Biomaterials, 20(5), 409–417. https://doi.org/10.1016/S0142-9612(98)00180-X
  • Chong, C., Wang, Y., Fathi, A., Parungao, R., Maitz, P. K., & Li, Z. (2019). Skin wound repair: Results of a pre-clinical study to evaluate electropsun collagen–elastin–PCL scaffolds as dermal substitutes. Burns: Journal of the International Society for Burn Injuries, 45(7), 1639–1648. https://doi.org/10.1016/j.burns.2019.04.014
  • Chou, S.-F., Carson, D., & Woodrow, K. A. (2015). Current strategies for sustaining drug release from electrospun nanofibers. Journal of Controlled Release, 220, 584–591. https://doi.org/10.1016/j.jconrel.2015.09.008
  • Chouhan, D., Chakraborty, B., Nandi, S. K., & Mandal, B. B. (2017). Role of non-mulberry silk fibroin in deposition and regulation of extracellular matrix towards accelerated wound healing. Acta Biomaterialia, 48, 157–174. https://doi.org/10.1016/j.actbio.2016.10.019
  • Cortesi, R., Nastruzzi, C., & Davis, S. (1998). Sugar cross-linked gelatin for controlled release: Microspheres and disks. Biomaterials, 19(18), 1641–1649. https://doi.org/10.1016/S0142-9612(98)00034-9
  • Craighead, H. G. (2003). Nanostructure science and technology: Impact and prospects for biology. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 21(5), S216–S221. https://doi.org/10.1116/1.1600444
  • Crespy, D., Friedemann, K., & Popa, A. M. (2012). Colloid‐electrospinning: Fabrication of multicompartment nanofibers by the electrospinning of organic or/and inorganic dispersions and emulsions. Macromolecular Rapid Communications, 33(23), 1978–1995. https://doi.org/10.1002/marc.201200549
  • Cutone, A., Rosa, L., Ianiro, G., Lepanto, M. S., Bonaccorsi di Patti, M. C., Valenti, P., & Musci, G. (2020). Lactoferrin’s anti-cancer properties: Safety, selectivity, and wide range of action. Biomolecules, 10(3), 456. https://doi.org/10.3390/biom10030456
  • da Silva, F. T., da Cunha, K. F., Fonseca, L. M., Antunes, M. D., El Halal, S. L. M., Fiorentini, Â. M., da Rosa Zavareze, E., & Dias, A. R. G. (2018). Action of ginger essential oil (Zingiber officinale) encapsulated in proteins ultrafine fibers on the antimicrobial control in situ. International Journal of Biological Macromolecules, 118, 107–115. https://doi.org/10.1016/j.ijbiomac.2018.06.079
  • Dai, Y., Liu, W., Formo, E., Sun, Y., & Xia, Y. (2011). Ceramic nanofibers fabricated by electrospinning and their applications in catalysis, environmental science, and energy technology. Polymers for Advanced Technologies, 22(3), 326–338. https://doi.org/10.1002/pat.1839
  • Dashdorj, U., Reyes, M. K., Unnithan, A. R., Tiwari, A. P., Tumurbaatar, B., Park, C. H., & Kim, C. S. (2015). Fabrication and characterization of electrospun zein/Ag nanocomposite mats for wound dressing applications. International Journal of Biological Macromolecules, 80, 1–7. https://doi.org/10.1016/j.ijbiomac.2015.06.026
  • Datta, L. P., Manchineella, S., & Govindaraju, T. (2020). Biomolecules-derived biomaterials. Biomaterials, 230, 119633. https://doi.org/10.1016/j.biomaterials.2019.119633
  • de Torre, I. G., Ibáñez-Fonseca, A., Quintanilla, L., Alonso, M., & Rodríguez-Cabello, J.-C. (2018). Random and oriented electrospun fibers based on a multicomponent, in situ clickable elastin-like recombinamer system for dermal tissue engineering. Acta Biomaterialia, 72, 137–149. https://doi.org/10.1016/j.actbio.2018.03.027
  • DeFrates, K. G., Moore, R., Borgesi, J., Lin, G., Mulderig, T., Beachley, V., & Hu, X. (2018). Protein-based fiber materials in medicine: A review. Nanomaterials, 8(7), 457. https://doi.org/10.3390/nano8070457
  • Deitzel, J. M., Kleinmeyer, J., Harris, D., & Tan, N. B. (2001). The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 42(1), 261–272. https://doi.org/10.1016/S0032-3861(00)00250-0
  • Dekkers, B. L., Nikiforidis, C. V., & van der Goot, A. J. (2016). Shear-induced fibrous structure formation from a pectin/SPI blend. Innovative Food Science & Emerging Technologies, 36, 193–200. https://doi.org/10.1016/j.ifset.2016.07.003
  • Ding, Y., Hou, H., Zhao, Y., Zhu, Z., & Fong, H. (2016). Electrospun polyimide nanofibers and their applications. Progress in Polymer Science, 61, 67–103. https://doi.org/10.1016/j.progpolymsci.2016.06.006
  • Dippold, D., Cai, A., Hardt, M., Boccaccini, A. R., Horch, R. E., Beier, J. P., & Schubert, D. W. (2019). Investigation of the batch-to-batch inconsistencies of Collagen in PCL-Collagen nanofibers. Materials Science & Engineering. C, Materials for Biological Applications, 95, 217–225. https://doi.org/10.1016/j.msec.2018.10.057
  • Doshi, J., & Reneker, D. H. (1995). Electrospinning process and applications of electrospun fibers. Journal of Electrostatics, 35(2–3), 151–160. https://doi.org/10.1016/0304-3886(95)00041-8
  • Doyle, A. A., & Stephens, J. C. (2019). A review of cinnamaldehyde and its derivatives as antibacterial agents. Fitoterapia, 139, 104405. https://doi.org/10.1016/j.fitote.2019.104405
  • Edmans, J. G., Murdoch, C., Santocildes-Romero, M. E., Hatton, P. V., Colley, H. E., & Spain, S. G. (2020). Incorporation of lysozyme into a mucoadhesive electrospun patch for rapid protein delivery to the oral mucosa. Materials Science and Engineering: C, 112, 110917. https://doi.org/10.1016/j.msec.2020.110917
  • Ellison, R., 3rd., & Giehl, T. J. (1991). Killing of gram-negative bacteria by lactoferrin and lysozyme. The Journal of Clinical Investigation, 88(4), 1080–1091. https://doi.org/10.1172/JCI115407
  • Erfan, N. A., Barakat, N. A., & Muller-Borer, B. J. (2019). Preparation and characterization of ß-lactoglobulin/poly (ethylene oxide) magnetic nanofibers for biomedical applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 576, 63–72. https://doi.org/10.1016/j.colsurfa.2019.05.035
  • Falkowski, M., Maciejczyk, M., Koprowicz, T., Mikołuć, B., Milewska, A., Zalewska, A., & Car, H. (2018). Whey protein concentrate wpc-80 improves antioxidant defense systems in the salivary glands of 14-month wistar rats. Nutrients, 10(6), 782. https://doi.org/10.3390/nu10060782
  • Fan, X., Wang, Y., Zheng, M., Dunne, F., Liu, T., Fu, X., Kong, L., Pan, S., & Zhong, W.-H. (2018). Morphology engineering of protein fabrics for advanced and sustainable filtration. Journal of Materials Chemistry A, 6(43), 21585–21595. https://doi.org/10.1039/C8TA08717B
  • Fang, Y., Xu, L., & Wang, M. (2018). High-throughput preparation of silk fibroin nanofibers by modified bubble-electrospinning. Nanomaterials, 8(7), 471. https://doi.org/10.3390/nano8070471
  • Fearing, B. V., & Van Dyke, M. E. (2014). In vitro response of macrophage polarization to a keratin biomaterial. Acta Biomaterialia, 10(7), 3136–3144. https://doi.org/10.1016/j.actbio.2014.04.003
  • Figueira, D. R., Miguel, S. P., de Sá, K. D., & Correia, I. J. (2016). Production and characterization of polycaprolactone-hyaluronic acid/chitosan-zein electrospun bilayer nanofibrous membrane for tissue regeneration. International Journal of Biological Macromolecules, 93, 1100–1110. https://doi.org/10.1016/j.ijbiomac.2016.09.080
  • Formhals, A. (1938). Artificial fiber construction. US 2109333 A. US Patent.
  • Gajewicz, A., Rasulev, B., Dinadayalane, T. C., Urbaszek, P., Puzyn, T., Leszczynska, D., & Leszczynski, J. (2012). Advancing risk assessment of engineered nanomaterials: Application of computational approaches. Advanced Drug Delivery Reviews, 64(15), 1663–1693. https://doi.org/10.1016/j.addr.2012.05.014
  • Gautam, S., Chou, C.-F., Dinda, A. K., Potdar, P. D., & Mishra, N. C. (2014). Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering. Materials Science & Engineering. C, Materials for Biological Applications, 34, 402–409. https://doi.org/10.1016/j.msec.2013.09.043
  • Gautam, S., Dinda, A. K., & Mishra, N. C. (2013). Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method. Materials Science & Engineering. C, Materials for Biological Applications, 33(3), 1228–1235. https://doi.org/10.1016/j.msec.2012.12.015
  • Georgakilas, V., Tiwari, J. N., Kemp, K. C., Perman, J. A., Bourlinos, A. B., Kim, K. S., & Zboril, R. (2016). Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chemical Reviews, 116(9), 5464–5519. https://doi.org/10.1021/acs.chemrev.5b00620
  • Ghorbani, M., Mahmoodzadeh, F., Maroufi, L. Y., & Nezhad-Mokhtari, P. (2020). Electrospun tetracycline hydrochloride loaded zein/gum tragacanth/poly lactic acid nanofibers for biomedical application. International Journal of Biological Macromolecules, 165(Pt A), 1312–1322. https://doi.org/10.1016/j.ijbiomac.2020.09.225
  • Gibson, P., Schreuder-Gibson, H., & Rivin, D. (2001). Transport properties of porous membranes based on electrospun nanofibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 187, 469–481.
  • Godoy-Gallardo, M., Mas-Moruno, C., Fernández-Calderón, M. C., Pérez-Giraldo, C., Manero, J. M., Albericio, F., Gil, F. J., & Rodríguez, D. (2014). Covalent immobilization of hLf1-11 peptide on a titanium surface reduces bacterial adhesion and biofilm formation. Acta Biomaterialia, 10(8), 3522–3534. https://doi.org/10.1016/j.actbio.2014.03.026
  • Gomes, S. R., Rodrigues, G., Martins, G. G., Roberto, M. A., Mafra, M., Henriques, C., & Silva, J. C. (2015). In vitro and in vivo evaluation of electrospun nanofibers of PCL, chitosan and gelatin: A comparative study. Materials Science & Engineering. C, Materials for Biological Applications, 46, 348–358. https://doi.org/10.1016/j.msec.2014.10.051
  • Gönen, S. Ö., Taygun, M. E., & Küçükbayrak, S. (2016). Evaluation of the factors influencing the resultant diameter of the electrospun gelatin/sodium alginate nanofibers via Box–Behnken design. Materials Science & Engineering. C, Materials for Biological Applications, 58, 709–723. https://doi.org/10.1016/j.msec.2015.09.024
  • Goodsell, D. S. (2004). Bionanotechnology: lessons from nature. John Wiley & Sons.
  • Gosline, J. M., DeMont, M. E., & Denny, M. W. (1986). The structure and properties of spider silk. Endeavour, 10(1), 37–43. https://doi.org/10.1016/0160-9327(86)90049-9
  • Guidoin, R., Marceau, D., Rao, T. J., King, M., Merhi, Y., Roy, P.-E., Martin, L., & Duval, M. (1987). In vitro and in vivo characterization of an impervious polyester arterial prosthesis: The Gelseal Triaxial® graft. Biomaterials, 8(6), 433–441. https://doi.org/10.1016/0142-9612(87)90079-2
  • Guo, Y., Wang, X., Shen, Y., Dong, K., Shen, L., & Alzalab, A. A. A. (2021). Research progress, models and simulation of electrospinning technology: A review. Journal of Materials Science, 57, 58–104. https://doi.org/10.1007/s10853-021-06575-w.
  • Hackenberg, S., Friehs, G., Froelich, K., Ginzkey, C., Koehler, C., Scherzed, A., Burghartz, M., Hagen, R., & Kleinsasser, N. (2010). Intracellular distribution, geno-and cytotoxic effects of nanosized titanium dioxide particles in the anatase crystal phase on human nasal mucosa cells. Toxicology Letters, 195(1), 9–14. https://doi.org/10.1016/j.toxlet.2010.02.022
  • Hammel, J. H., Zatorski, J. M., Cook, S. R., Pompano, R. R., & Munson, J. M. (2022). Engineering in vitro immune-competent tissue models for testing and evaluation of therapeutics. Advanced Drug Delivery Reviews, 114111.
  • Hasirci, V., Vrana, E., Zorlutuna, P., Ndreu, A., Yilgor, P., Basmanav, F., & Aydin, E. (2006). Nanobiomaterials: A review of the existing science and technology, and new approaches. Journal of Biomaterials Science, Polymer Edition, 17(11), 1241–1268. https://doi.org/10.1163/156856206778667442
  • He, M., Chen, M., Dou, Y., Ding, J., Yue, H., Yin, G., Chen, X., & Cui, Y. (2020). Electrospun silver nanoparticles-embedded feather keratin/poly (vinyl alcohol)/poly (ethylene oxide) antibacterial composite nanofibers. Polymers, 12(2), 305. https://doi.org/10.3390/polym12020305
  • Heidari, M., Bahrami, H., & Ranjbar-Mohammadi, M. (2017). Fabrication, optimization and characterization of electrospun poly (caprolactone)/gelatin/graphene nanofibrous mats. Materials Science & Engineering. C, Materials for Biological Applications, 78, 218–229. https://doi.org/10.1016/j.msec.2017.04.095
  • Heuer-Jungemann, A., Feliu, N., Bakaimi, I., Hamaly, M., Alkilany, A., Chakraborty, I., Masood, A., Casula, M. F., Kostopoulou, A., Oh, E., Susumu, K., Stewart, M. H., Medintz, I. L., Stratakis, E., Parak, W. J., & Kanaras, A. G. (2019). The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chemical Reviews, 119(8), 4819–4880. https://doi.org/10.1021/acs.chemrev.8b00733
  • Horne, D. S. (2002). Casein structure, self-assembly and gelation. Current Opinion in Colloid & Interface Science, 7(5–6), 456–461. https://doi.org/10.1016/S1359-0294(02)00082-1
  • Huang, C.-H., Chi, C.-Y., Chen, Y.-S., Chen, K.-Y., Chen, P.-L., & Yao, C.-H. (2012). Evaluation of proanthocyanidin-crosslinked electrospun gelatin nanofibers for drug delivering system. Materials Science and Engineering: C, 32(8), 2476–2483. https://doi.org/10.1016/j.msec.2012.07.029
  • Huang, J., Liu, L., & Yao, J. (2011). Electrospinning of Bombyx mori silk fibroin nanofiber mats reinforced by cellulose nanowhiskers. Fibers and Polymers, 12(8), 1002–1006. https://doi.org/10.1007/s12221-011-1002-7
  • Huang, L., Nagapudi, K. P., Apkarian, R., & Chaikof, E. L. (2001). Engineered collagen–PEO nanofibers and fabrics. Journal of Biomaterials Science, Polymer Edition, 12(9), 979–993. https://doi.org/10.1163/156856201753252516
  • Huang, X. J., Xu, Z. K., Wan, L. S., Innocent, C., & Seta, P. (2006). Electrospun nanofibers modified with phospholipid moieties for enzyme immobilization. Macromolecular Rapid Communications, 27(16), 1341–1345. https://doi.org/10.1002/marc.200600266
  • Huang, Z.-M., Zhang, Y., Ramakrishna, S., & Lim, C. (2004). Electrospinning and mechanical characterization of gelatin nanofibers. Polymer, 45(15), 5361–5368. https://doi.org/10.1016/j.polymer.2004.04.005
  • Hurtado-López, P., & Murdan, S. (2006). An investigation into the adjuvanticity and immunogenicity of zein microspheres being researched as drug and vaccine carriers. The Journal of Pharmacy and Pharmacology, 58(6), 769–774. https://doi.org/10.1211/jpp.58.6.0007
  • Hwang, C.-K., Lee, K. A., Lee, J., Kim, Y., Ahn, H., Hwang, W., Ju, B.-K., Kim, J. Y., Yeo, S. Y., Choi, J., Sung, Y.-E., Kim, I.-D., & Yoon, K. R. (2022). Perpendicularly stacked array of PTFE nanofibers as a reinforcement for highly durable composite membrane in proton exchange membrane fuel cells. Nano Energy, 101, 107581. https://doi.org/10.1016/j.nanoen.2022.107581
  • Ipsen, R., & Otte, J. (2007). Self-assembly of partially hydrolysed α-lactalbumin. Biotechnology Advances, 25(6), 602–605. https://doi.org/10.1016/j.biotechadv.2007.07.006
  • Jalaja, K., Sreehari, V., Kumar, P. A., & Nirmala, R. J. (2016). Graphene oxide decorated electrospun gelatin nanofibers: Fabrication, properties and applications. Materials Science and Engineering: C, 64, 11–19. https://doi.org/10.1016/j.msec.2016.03.036
  • Jamnongkan, T., Sukumaran, S. K., Sugimoto, M., Hara, T., Takatsuka, Y., & Koyama, K. (2015). Towards novel wound dressings: Antibacterial properties of zinc oxide nanoparticles and electrospun fiber mats of zinc oxide nanoparticle/poly (vinyl alcohol) hybrids. Journal of Polymer Engineering, 35(6), 575–586. https://doi.org/10.1515/polyeng-2014-0319
  • Jeong, L., Yeo, I.-S., Kim, H. N., Yoon, Y. I., Jang, D. H., Jung, S. Y., Min, B.-M., & Park, W. H. (2009). Plasma-treated silk fibroin nanofibers for skin regeneration. International Journal of Biological Macromolecules, 44(3), 222–228. https://doi.org/10.1016/j.ijbiomac.2008.12.008
  • Ji, W., Sun, Y., Yang, F., van den Beucken, J. J., Fan, M., Chen, Z., & Jansen, J. A. (2011). Bioactive electrospun scaffolds delivering growth factors and genes for tissue engineering applications. Pharmaceutical Research, 28(6), 1259–1272. https://doi.org/10.1007/s11095-010-0320-6
  • Jonas, R. A., Ziemer, G., Schoen, F. J., Britton, L., & Castaneda, A. R. (1988). A new sealant for knitted Dacron prostheses: Minimally cross-linked gelatin. Journal of Vascular Surgery, 7(3), 414–419. https://doi.org/10.1067/mva.1988.avs0070414
  • JoséFonseca, M., Alsina, M. A., & Reig, F. (1996). Coating liposomes with collagen (Mr 50 000) increases uptake into liver. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1279(2), 259–265. https://doi.org/10.1016/0005-2736(95)00265-0
  • Kailasa, S., Reddy, M. S. B., Maurya, M. R., Rani, B. G., Rao, K. V., & Sadasivuni, K. K. (2021). Electrospun nanofibers: Materials, synthesis parameters, and their role in sensing applications. Macromolecular Materials and Engineering, 306(11), 2100410. https://doi.org/10.1002/mame.202100410
  • Kameoka, J., Orth, R., Yang, Y., Czaplewski, D., Mathers, R., Coates, G. W., & Craighead, H. G. (2003). A scanning tip electrospinning source for deposition of oriented nanofibres. Nanotechnology, 14(10), 1124–1129. https://doi.org/10.1088/0957-4484/14/10/310
  • Kanawung, K., Panitchanapan, K., Puangmalee, S.-O., Utok, W., Kreua-Ongarjnukool, N., Rangkupan, R., Meechaisue, C., & Supaphol, P. (2007). Preparation and characterization of polycaprolactone/diclofenac sodium and poly (vinyl alcohol)/tetracycline hydrochloride fiber mats and their release of the model drugs. Polymer Journal, 39(4), 369–378. https://doi.org/10.1295/polymj.PJ2006011
  • Kanjanapongkul, K., Wongsasulak, S., & Yoovidhya, T. (2010). Investigation and prevention of clogging during electrospinning of zein solution. Journal of Applied Polymer Science, 118(3), n/a–n/a. https://doi.org/10.1002/app.32499
  • Karthikeyan, K., Guhathakarta, S., Rajaram, R., & Korrapati, P. S. (2012). Electrospun zein/eudragit nanofibers based dual drug delivery system for the simultaneous delivery of aceclofenac and pantoprazole. International Journal of Pharmaceutics, 438(1–2), 117–122. https://doi.org/10.1016/j.ijpharm.2012.07.075
  • Kemp, P. D. (2000). Tissue engineering and cell-populated collagen matrices. Extracellular Matrix Protocols, 139, 287–293. https://doi.org/10.1385/1-59259-063-2:287
  • Khabbaz, B., Solouk, A., & Mirzadeh, H. (2019). Polyvinyl alcohol/soy protein isolate nanofibrous patch for wound-healing applications. Progress in Biomaterials, 8(3), 185–196. https://doi.org/10.1007/s40204-019-00120-4
  • Khadka, D. B., & Haynie, D. T. (2012). Protein-and peptide-based electrospun nanofibers in medical biomaterials. Nanomedicine: Nanotechnology, Biology and Medicine, 8(8), 1242–1262. https://doi.org/10.1016/j.nano.2012.02.013
  • Khalili, S., Khorasani, S. N., Razavi, S. M., Hashemibeni, B., & Tamayol, A. (2019). Nanofibrous scaffolds with biomimetic composition for skin regeneration. Applied Biochemistry and Biotechnology, 187(4), 1193–1203. https://doi.org/10.1007/s12010-018-2871-7
  • Khan, M. U., Pirzadeh, M., Förster, C. Y., Shityakov, S., & Shariati, M. A. (2018). Role of milk-derived antibacterial peptides in modern food biotechnology: Their synthesis, applications and future perspectives. Biomolecules, 8(4), 110. https://doi.org/10.3390/biom8040110
  • Khandaker, M., Alkadhem, N., Progri, H., Nikfarjam, S., Jeon, J., Kotturi, H., & Vaughan, M. B. (2022). Glutathione immobilized polycaprolactone nanofiber mesh as a dermal drug delivery mechanism for wound healing in a diabetic patient. Processes, 10(3), 512. https://doi.org/10.3390/pr10030512
  • Ki, C. S., Baek, D. H., Gang, K. D., Lee, K. H., Um, I. C., & Park, Y. H. (2005). Characterization of gelatin nanofiber prepared from gelatin–formic acid solution. Polymer, 46(14), 5094–5102. https://doi.org/10.1016/j.polymer.2005.04.040
  • Kim, J.-H., Baek, J. H., Lim, H. K., Ahn, H. S., Baek, S. M., Choi, Y. J., Choi, Y. J., Chung, S. R., Ha, E. J., Hahn, S. Y., Jung, S. L., Kim, D. S., Kim, S. J., Kim, Y. K., Lee, C. Y., Lee, J. H., Lee, K. H., Lee, Y. H., Park, J. S., … Na, D. G., Guideline Committee for the Korean Society of Thyroid Radiology (KSThR) and Korean Society of Radiology. (2018). 2017 thyroid radiofrequency ablation guideline: Korean Society of Thyroid Radiology. Korean Journal of Radiology, 19(4), 632–655. https://doi.org/10.3348/kjr.2018.19.4.632
  • Kim, S. H., Nam, Y. S., Lee, T. S., & Park, W. H. (2003). Silk fibroin nanofiber. Electrospinning, properties, and structure. Polymer Journal, 35(2), 185–190. https://doi.org/10.1295/polymj.35.185
  • Kimna, C., Tamburaci, S., & Tihminlioglu, F. (2019). Novel zein‐based multilayer wound dressing membranes with controlled release of gentamicin. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 107(6), 2057–2070. https://doi.org/10.1002/jbm.b.34298
  • Klabunde, K. J., & Richards, R. M. (2009). Nanoscale materials in chemistry. John Wiley & Sons.
  • Kriegel, C., Arecchi, A., Arrechi, A., Kit, K., McClements, D. J., & Weiss, J. (2008). Fabrication, functionalization, and application of electrospun biopolymer nanofibers. Critical Reviews in Food Science and Nutrition, 48(8), 775–797. https://doi.org/10.1080/10408390802241325
  • Krintiras, G. A., Göbel, J., Van der Goot, A. J., & Stefanidis, G. D. (2015). Production of structured soy-based meat analogues using simple shear and heat in a Couette Cell. Journal of Food Engineering, 160, 34–41. https://doi.org/10.1016/j.jfoodeng.2015.02.015
  • Kumar, S., Lakshmanan, V.-K., Raj, M., Biswas, R., Hiroshi, T., Nair, S. V., & Jayakumar, R. (2013). Evaluation of wound healing potential of [beta]-chitin hydrogel/nano zinc oxide composite bandage. Pharmaceutical Research, 30(2), 523.
  • Labib, G. (2018). Overview on zein protein: A promising pharmaceutical excipient in drug delivery systems and tissue engineering. Expert Opinion on Drug Delivery, 15(1), 65–75. https://doi.org/10.1080/17425247.2017.1349752
  • Langer, R., & Tirrell, D. A. (2004). Designing materials for biology and medicine. Nature, 428(6982), 487–492. [Database] https://doi.org/10.1038/nature02388
  • Lee, C. H., Singla, A., & Lee, Y. (2001). Biomedical applications of collagen. International Journal of Pharmaceutics, 221(1–2), 1–22. https://doi.org/10.1016/s0378-5173(01)00691-3
  • LF Nascimento, M., S., Araujo, E., R., Cordeiro, E., HP de Oliveira, A., P., & de Oliveira, H. (2015). A literature investigation about electrospinning and nanofibers: Historical trends, current status and future challenges. Recent Patents on Nanotechnology, 9(2), 76–85.
  • Li, J., Feng, H., He, J., Li, C., Mao, X., Xie, D., Ao, N., & Chu, B. (2013). Coaxial electrospun zein nanofibrous membrane for sustained release. Journal of Biomaterials Science. Polymer Edition, 24(17), 1923–1934. https://doi.org/10.1080/09205063.2013.808960
  • Li, J., Mei, H., Zheng, W., Pan, P., Sun, X. J., Li, F., Guo, F., Zhou, H. M., Ma, J. Y., Xu, X. X., & Zheng, Y. F. (2014). A novel hydrogen peroxide biosensor based on hemoglobin-collagen-CNTs composite nanofibers. Colloids and Surfaces. B, Biointerfaces, 118, 77–82. https://doi.org/10.1016/j.colsurfb.2014.03.035
  • Li, X., Yan, S., Dai, J., Lu, Y., Wang, Y., Sun, M., Gong, J., & Yao, Y. (2018). Human lung epithelial cells A549 epithelial-mesenchymal transition induced by PVA/Collagen nanofiber. Colloids and Surfaces. B, Biointerfaces, 162, 390–397. https://doi.org/10.1016/j.colsurfb.2017.12.010
  • Liu, S.-J., Kau, Y.-C., Chou, C.-Y., Chen, J.-K., Wu, R.-C., & Yeh, W.-L. (2010). Electrospun PLGA/collagen nanofibrous membrane as early-stage wound dressing. Journal of Membrane Science, 355(1–2), 53–59. https://doi.org/10.1016/j.memsci.2010.03.012
  • Liu, Y., Edwards, J. V., Prevost, N., Huang, Y., & Chen, J. Y. (2018). Physico-and bio-activities of nanoscale regenerated cellulose nonwoven immobilized with lysozyme. Materials Science & Engineering. C, Materials for Biological Applications, 91, 389–394. https://doi.org/10.1016/j.msec.2018.05.061
  • Lu, H., Wang, J., Wang, T., Zhong, J., Bao, Y., & Hao, H. (2016). Recent progress on nanostructures for drug delivery applications. Journal of Nanomaterials, 2016, 1–12. https://doi.org/10.1155/2016/5762431
  • Lu, S., Xia, D., Huang, G., Jing, H., Wang, Y., & Gu, H. (2010). Concentration effect of gold nanoparticles on proliferation of keratinocytes. Colloids and Surfaces B: Biointerfaces, 81(2), 406–411. https://doi.org/10.1016/j.colsurfb.2010.06.019
  • Lucas, P. A., Laurencin, C., Syftestad, G. T., Domb, A., Goldberg, V. M., Caplan, A. I., & Langer, R. (1990). Ectopic induction of cartilage and bone by water‐soluble proteins from bovine bone using a polyanhydride delivery vehicle. Journal of Biomedical Materials Research, 24(7), 901–911. https://doi.org/10.1002/jbm.820240708
  • Lv, D., Zhu, M., Jiang, Z., Jiang, S., Zhang, Q., Xiong, R., & Huang, C. (2018). Green electrospun nanofibers and their application in air filtration. Macromolecular Materials and Engineering, 303(12), 1800336. https://doi.org/10.1002/mame.201800336
  • Lvov, Y., Wang, W., Zhang, L., & Fakhrullin, R. (2016). Halloysite clay nanotubes for loading and sustained release of functional compounds. Advanced Materials (Deerfield Beach, FL), 28(6), 1227–1250. https://doi.org/10.1002/adma.201502341
  • Machado, R., Da Costa, A., Sencadas, V., Garcia-Arévalo, C., Costa, C. M., Padrao, J., Gomes, A., Lanceros-Méndez, S., Rodríguez-Cabello, J. C., & Casal, M. (2013). Electrospun silk-elastin-like fibre mats for tissue engineering applications. Biomedical Materials (Bristol, England), 8(6), 065009. https://doi.org/10.1088/1748-6041/8/6/065009
  • Machado, R., Da Costa, A., Silva, D. M., Gomes, A. C., Casal, M., & Sencadas, V. (2018). Antibacterial and antifungal activity of poly (lactic acid)–bovine lactoferrin nanofiber membranes. Macromolecular Bioscience, 18(3), 1700324. https://doi.org/10.1002/mabi.201700324
  • Maciel, K. S., Santos, L. S., Bonomo, R. C. F., Verissimo, L. A. A., Minim, V., P. R., & Minim, L. A. (2020). Purification of lactoferrin from sweet whey using ultrafiltration followed by expanded bed chromatography. Separation and Purification Technology, 251, 117324. https://doi.org/10.1016/j.seppur.2020.117324
  • Maftoonazad, N., Shahamirian, M., John, D., & Ramaswamy, H. (2019). Development and evaluation of antibacterial electrospun pea protein isolate-polyvinyl alcohol nanocomposite mats incorporated with cinnamaldehyde. Materials Science & Engineering. C, Materials for Biological Applications, 94, 393–402. https://doi.org/10.1016/j.msec.2018.09.033
  • Maharjan, B., Joshi, M. K., Tiwari, A. P., Park, C. H., & Kim, C. S. (2017). In-situ synthesis of AgNPs in the natural/synthetic hybrid nanofibrous scaffolds: Fabrication, characterization and antimicrobial activities. Journal of the Mechanical Behavior of Biomedical Materials, 65, 66–76. https://doi.org/10.1016/j.jmbbm.2016.07.034
  • Marois, Y., Chakfé, N., Deng, X., Marois, M., How, T., King, M. W., & Guidoin, R. (1995). Carbodiimide cross-linked gelatin: A new coating for porous polyester arterial prostheses. Biomaterials, 16(15), 1131–1139. https://doi.org/10.1016/0142-9612(95)93576-y
  • Márquez-Ramírez, S. G., Delgado-Buenrostro, N. L., Chirino, Y. I., Iglesias, G. G., & López-Marure, R. (2012). Titanium dioxide nanoparticles inhibit proliferation and induce morphological changes and apoptosis in glial cells. Toxicology, 302(2–3), 146–156. https://doi.org/10.1016/j.tox.2012.09.005
  • Martina, M., & Hutmacher, D. W. (2007). Biodegradable polymers applied in tissue engineering research: A review. Polymer International, 56(2), 145–157. https://doi.org/10.1002/pi.2108
  • Massaro, M., Lazzara, G., Milioto, S., Noto, R., & Riela, S. (2017). Correction: Covalently modified halloysite clay nanotubes: Synthesis, properties, biological and medical applications. Journal of Materials Chemistry. B, 5(22), 4246–4246. https://doi.org/10.1039/c7tb90071f
  • Matabola, K., & Moutloali, R. (2013). The influence of electrospinning parameters on the morphology and diameter of poly (vinyledene fluoride) nanofibers-effect of sodium chloride. Journal of Materials Science, 48(16), 5475–5482. https://doi.org/10.1007/s10853-013-7341-6
  • Matthews, J. A., Wnek, G. E., Simpson, D. G., & Bowlin, G. L. (2002). Electrospinning of collagen nanofibers. Biomacromolecules, 3(2), 232–238. https://doi.org/10.1021/bm015533u
  • Mbese, Z., Alven, S., & Aderibigbe, B. A. (2021). Collagen-based nanofibers for skin regeneration and wound dressing applications. Polymers, 13(24), 4368. https://doi.org/10.3390/polym13244368
  • Mehrasa, M., Asadollahi, M. A., Nasri-Nasrabadi, B., Ghaedi, K., Salehi, H., Dolatshahi-Pirouz, A., & Arpanaei, A. (2016). Incorporation of mesoporous silica nanoparticles into random electrospun PLGA and PLGA/gelatin nanofibrous scaffolds enhances mechanical and cell proliferation properties. Materials Science & Engineering. C, Materials for Biological Applications, 66, 25–32. https://doi.org/10.1016/j.msec.2016.04.031
  • Mendes, A. C., Stephansen, K., & Chronakis, I. S. (2017). Electrospinning of food proteins and polysaccharides. Food Hydrocolloids, 68, 53–68. https://doi.org/10.1016/j.foodhyd.2016.10.022
  • Meng, Z., Li, H., Sun, Z., Zheng, W., & Zheng, Y. (2013). Fabrication of mineralized electrospun PLGA and PLGA/gelatin nanofibers and their potential in bone tissue engineering. Materials Science & Engineering. C, Materials for Biological Applications, 33(2), 699–706. https://doi.org/10.1016/j.msec.2012.10.021
  • Meng, Z., Wang, Y., Ma, C., Zheng, W., Li, L., & Zheng, Y. (2010). Electrospinning of PLGA/gelatin randomly-oriented and aligned nanofibers as potential scaffold in tissue engineering. Materials Science and Engineering: C, 30(8), 1204–1210. https://doi.org/10.1016/j.msec.2010.06.018
  • Miller, J. M., Zoll, D. R., & Brown, E. O. (1964). Clinical observations: On use of an extruded collagen suture. Archives of Surgery (Chicago, IL: 1960), 88(2), 167–174. https://doi.org/10.1001/archsurg.1964.01310200005002
  • Mitragotri, S., & Lahann, J. (2009). Physical approaches to biomaterial design. Nature Materials, 8(1), 15–23. https://doi.org/10.1038/nmat2344
  • Miyoshi, T., Toyohara, K., & Minematsu, H. (2005). Preparation of ultrafine fibrous zein membranes via electrospinning. Polymer International, 54(8), 1187–1190. https://doi.org/10.1002/pi.1829
  • Morton, W., & Patent, U. (1902). 705691. Method of dispersing fluids.
  • Munir, M. W., & Ali, U. (2020). Classification of electrospinning methods. In Nanorods and nanocomposites (pp. 229). IntechOpen London.
  • Nascimento, E. G. d., Sampaio, T. B. M., Medeiros, A. C., & Azevedo, E. P. d (2009). Evaluation of chitosan gel with 1% silver sulfadiazine as an alternative for burn wound treatment in rats. Acta Cirurgica Brasileira, 24(6), 460–465. https://doi.org/10.1590/s0102-86502009000600007
  • Nayak, R., Padhye, R., Kyratzis, I. L., Truong, Y. B., & Arnold, L. (2012). Recent advances in nanofibre fabrication techniques. Textile Research Journal, 82(2), 129–147. https://doi.org/10.1177/0040517511424524
  • Nel, A. E., Mädler, L., Velegol, D., Xia, T., Hoek, E., Somasundaran, P., Klaessig, F., Castranova, V., & Thompson, M. (2009). Understanding biophysicochemical interactions at the nano–bio interface. Nature Materials, 8(7), 543–557. https://doi.org/10.1038/nmat2442
  • Nguyen, T. H., Kim, Y. H., Song, H. Y., & Lee, B. T. (2011). Nano Ag loaded PVA nano‐fibrous mats for skin applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 96(2), 225–233.
  • Nirwan, V. P., Kowalczyk, T., Bar, J., Buzgo, M., Filová, E., & Fahmi, A. (2022). Advances in electrospun hybrid nanofibers for biomedical applications. Nanomaterials, 12(11), 1829. https://doi.org/10.3390/nano12111829
  • Oguz, S., Tam, N., Aydogdu, A., Sumnu, G., & Sahin, S. (2018). Development of novel pea flour‐based nanofibres by electrospinning method. International Journal of Food Science & Technology, 53(5), 1269–1277. https://doi.org/10.1111/ijfs.13707
  • Ohgo, K., Zhao, C., Kobayashi, M., & Asakura, T. (2003). Preparation of non-woven nanofibers of Bombyx mori silk, Samia cynthia ricini silk and recombinant hybrid silk with electrospinning method. Polymer, 44(3), 841–846. https://doi.org/10.1016/S0032-3861(02)00819-4
  • Oram, J., & Reiter, B. (1968). Inhibition of bacteria by lactoferrin and other iron-chelating agents. Biochimica et Biophysica Acta (BBA) - General Subjects, 170(2), 351–365. https://doi.org/10.1016/0304-4165(68)90015-9
  • Ortiz-Sánchez, J. P., Cabrera-Chávez, F., la Barca, D., & Calderón, A. M. (2013). Maize prolamins could induce a gluten-like cellular immune response in some celiac disease patients. Nutrients, 5(10), 4174–4183. https://doi.org/10.3390/nu5104174
  • Osmond, M. J., & Mccall, M. J. (2010). Zinc oxide nanoparticles in modern sunscreens: An analysis of potential exposure and hazard. Nanotoxicology, 4(1), 15–41. https://doi.org/10.3109/17435390903502028
  • Padrão, J., Machado, R., Casal, M., Lanceros-Méndez, S., Rodrigues, L. R., Dourado, F., & Sencadas, V. (2015). Antibacterial performance of bovine lactoferrin-fish gelatine electrospun membranes. International Journal of Biological Macromolecules, 81, 608–614. https://doi.org/10.1016/j.ijbiomac.2015.08.047
  • Paliwal, R., & Palakurthi, S. (2014). Zein in controlled drug delivery and tissue engineering. Journal of Controlled Release: Official Journal of the Controlled Release Society, 189, 108–122. https://doi.org/10.1016/j.jconrel.2014.06.036
  • Pandurangan, M., & Kim, D. H. (2015). In vitro toxicity of zinc oxide nanoparticles: A review. Journal of Nanoparticle Research, 17(3), 1–8. https://doi.org/10.1007/s11051-015-2958-9
  • Pang, L., Ming, J., Pan, F., & Ning, X. (2019). Fabrication of silk fibroin fluorescent nanofibers via electrospinning. Polymers, 11(6), 986. https://doi.org/10.3390/polym11060986
  • Park, J. K., Choi, S. K., Jeong, K.-S., Lee, K.-M., Jung, G. S., Park, B.-H., & Jeon, W. (2012). Biomimetic rgd-engineered elastin-like extracellular matrix facilitates cutaneous wound healing in c57bl/6 mice by way of promoting the migration of epidermal keratinocytes and dermal fibroblasts.
  • Park, J.-M., Kim, M., Park, H.-S., Jang, A., Min, J., & Kim, Y.-H. (2013). Immobilization of lysozyme-CLEA onto electrospun chitosan nanofiber for effective antibacterial applications. International Journal of Biological Macromolecules, 54, 37–43. https://doi.org/10.1016/j.ijbiomac.2012.11.025
  • Park, J.-Y., & Lee, I.-H. (2010). Relative humidity effect on the preparation of porous electrospun polystyrene fibers. Journal of Nanoscience and Nanotechnology, 10(5), 3473–3477. https://doi.org/10.1166/jnn.2010.2349
  • Pelipenko, J., Kristl, J., Janković, B., Baumgartner, S., & Kocbek, P. (2013). The impact of relative humidity during electrospinning on the morphology and mechanical properties of nanofibers. International Journal of Pharmaceutics, 456(1), 125–134. https://doi.org/10.1016/j.ijpharm.2013.07.078
  • Peppas, N. A., & Langer, R. (1994). New challenges in biomaterials. Science (New York, NY), 263(5154), 1715–1720. https://doi.org/10.1126/science.8134835
  • Peterson, L. R. (2009). Bad bugs, no drugs: No ESCAPE revisited. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 49(6), 992–993. https://doi.org/10.1086/605539
  • Pezeshki-Modaress, M., Mirzadeh, H., & Zandi, M. (2015). Gelatin–GAG electrospun nanofibrous scaffold for skin tissue engineering: Fabrication and modeling of process parameters. Materials Science & Engineering. C, Materials for Biological Applications, 48, 704–712. https://doi.org/10.1016/j.msec.2014.12.023
  • Phillips, G. O., & Williams, P. A. (2011). Handbook of food proteins. Elsevier.
  • Plowman, J. E., Deb-Choudhury, S., & Dyer, J. M. (2013). Fibrous protein nanofibers. Protein Nanotechnology, 996, 61–76. https://doi.org/10.1007/978-1-62703-354-1_4
  • Podyacheva, O. Y., Cherepanova, S. V., Romanenko, A. I., Kibis, L. S., Svintsitskiy, D. A., Boronin, A. I., Stonkus, O. A., Suboch, A. N., Puzynin, A. V., & Ismagilov, Z. R. (2017). Nitrogen doped carbon nanotubes and nanofibers: Composition, structure, electrical conductivity and capacity properties. Carbon, 122, 475–483. https://doi.org/10.1016/j.carbon.2017.06.094
  • Rad, Z. P., Mokhtari, J., & Abbasi, M. (2018). Fabrication and characterization of PCL/zein/gum Arabic electrospun nanocomposite scaffold for skin tissue engineering. Materials Science and Engineering: C, 93, 356–366.
  • Rad, Z. P., Mokhtari, J., & Abbasi, M. (2019). Calendula officinalis extract/PCL/Zein/Gum arabic nanofibrous bio-composite scaffolds via suspension, two-nozzle and multilayer electrospinning for skin tissue engineering. International Journal of Biological Macromolecules, 135, 530–543.
  • Ramakrishna, S., Fujihara, K., Teo, W.-E., Yong, T., Ma, Z., & Ramaseshan, R. (2006). Electrospun nanofibers: Solving global issues. Materials Today, 9(3), 40–50. https://doi.org/10.1016/S1369-7021(06)71389-X
  • Rao, K. P. (1995). Recent developments of collagen-based materials for medical applications and drug delivery systems. Journal of Biomaterials Science. Polymer Edition, 7(7), 623–645. https://doi.org/10.1163/156856295x00526
  • Ratner, B. D., Hoffman, A. S., Schoen, F. J., & Lemons, J. E. (2004). Biomaterials science: an introduction to materials in medicine (pp. 162–164).
  • Reichl, S. (2009). Films based on human hair keratin as substrates for cell culture and tissue engineering. Biomaterials, 30(36), 6854–6866. https://doi.org/10.1016/j.biomaterials.2009.08.051
  • Ren, K., Wang, Y., Sun, T., Yue, W., & Zhang, H. (2017). Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes. Materials Science & Engineering. C, Materials for Biological Applications, 78, 324–332. https://doi.org/10.1016/j.msec.2017.04.084
  • Revabhai, P. M., Singhal, R. K., Basu, H., & Kailasa, S. K. (2022). Progress on boron nitride nanostructure materials: Properties, synthesis and applications in hydrogen storage and analytical chemistry. Journal of Nanostructure in Chemistry, 1–41.
  • Rial, R., Liu, Z., Messina, P., & Ruso, J. M. (2022). Role of nanostructured materials in hard tissue engineering. Advances in Colloid and Interface Science, 102682.
  • Ribeiro, N., Sousa, S. R., Van Blitterswijk, C. A., Moroni, L., & Monteiro, F. J. (2014). A biocomposite of collagen nanofibers and nanohydroxyapatite for bone regeneration. Biofabrication, 6(3), 035015. https://doi.org/10.1088/1758-5082/6/3/035015
  • Rice, L. B. (2009). The clinical consequences of antimicrobial resistance. Current Opinion in Microbiology, 12(5), 476–481. https://doi.org/10.1016/j.mib.2009.08.001
  • Rnjak-Kovacina, J., Wise, S. G., Li, Z., Maitz, P. K., Young, C. J., Wang, Y., & Weiss, A. S. (2011). Tailoring the porosity and pore size of electrospun synthetic human elastin scaffolds for dermal tissue engineering. Biomaterials, 32(28), 6729–6736. https://doi.org/10.1016/j.biomaterials.2011.05.065
  • Rnjak-Kovacina, J., Wise, S. G., Li, Z., Maitz, P. K., Young, C. J., Wang, Y., & Weiss, A. S. (2012). Electrospun synthetic human elastin: Collagen composite scaffolds for dermal tissue engineering. Acta Biomaterialia, 8(10), 3714–3722. https://doi.org/10.1016/j.actbio.2012.06.032
  • Roduner, E. (2006). Size matters: Why nanomaterials are different. Chemical Society Reviews, 35(7), 583–592. https://doi.org/10.1039/b502142c
  • Rojo, L., García-Fernández, L., Aguilar, M. R., & Vázquez-Lasa, B. (2022). Antimicrobial polymeric biomaterials based on synthetic, nanotechnology, and biotechnological approaches. Current Opinion in Biotechnology, 76, 102752. https://doi.org/10.1016/j.copbio.2022.102752
  • Rössler, B., Kreuter, J., & Ross, G. (1994). Effect of collagen microparticles on the stability of retinol and its absorption into hairless mouse skin in vitro. Die Pharmazie, 49(2–3), 175–179.
  • Rutledge, G. C., Li, Y., Fridrikh, S., Warner, S., Kalayci, V., & Patra, P. (2001). Electrostatic spinning and properties of ultrafine fibers. National Textile Center Annual Report: Nov. 2001, M01–D22.
  • Salas, C. (2017). Solution electrospinning of nanofibers. In Electrospun nanofibers (pp. 73–108). Elsevier.
  • Salas, C., Ago, M., Lucia, L. A., & Rojas, O. J. (2014). Synthesis of soy protein–lignin nanofibers by solution electrospinning. Reactive and Functional Polymers, 85, 221–227. https://doi.org/10.1016/j.reactfunctpolym.2014.09.022
  • Santin, M., & Ambrosio, L. (2008). Soybean-based biomaterials: Preparation, properties and tissue regeneration potential. Expert Review of Medical Devices, 5(3), 349–358. https://doi.org/10.1586/17434440.5.3.349
  • Santoro, S., Aragón, J., & Curclo, E. (2022). Preparation and characterization of polymeric nanofibers by electrospinning. In Hollow fibers and nanofibers in membrane science (pp. 63–107). Jenny Stanford Publishing.
  • Sarkar, S., Gulati, K., Mishra, A., & Poluri, K. M. (2020). Protein nanocomposites: Special inferences to lysozyme based nanomaterials. International Journal of Biological Macromolecules, 151, 467–482. https://doi.org/10.1016/j.ijbiomac.2020.02.179
  • Satilmis, B. (2022). Electrospinning Polymers of Intrinsic Microporosity (PIMs) ultrafine fibers; preparations, applications and future perspectives. Current Opinion in Chemical Engineering, 36, 100793. https://doi.org/10.1016/j.coche.2022.100793
  • Secchi, E., Marbach, S., Niguès, A., Stein, D., Siria, A., & Bocquet, L. (2016). Massive radius-dependent flow slippage in carbon nanotubes. Nature, 537(7619), 210–213. https://doi.org/10.1038/nature19315
  • Selvaraj, S., Thangam, R., & Fathima, N. N. (2018). Electrospinning of casein nanofibers with silver nanoparticles for potential biomedical applications. International Journal of Biological Macromolecules, 120(Pt B), 1674–1681. https://doi.org/10.1016/j.ijbiomac.2018.09.177
  • Sett, S., Lee, M., Weith, M., Pourdeyhimi, B., & Yarin, A. (2015). Biodegradable and biocompatible soy protein/polymer/adhesive sticky nano-textured interfacial membranes for prevention of esca fungi invasion into pruning cuts and wounds of vines. Journal of Materials Chemistry. B, 3(10), 2147–2162. https://doi.org/10.1039/c4tb01887g
  • Shahabuddin, M., Uddin, M. N., Chowdhury, J., Ahmed, S., Uddin, M., Mofijur, M., & Uddin, M. (2022). A review of the recent development, challenges, and opportunities of electronic waste (e-waste). International Journal of Environmental Science and Technology, 1–8. https://doi.org/10.1007/s13762-022-04274-w
  • Shahid, M. A., Ali, A., Uddin, M. N., Miah, S., Islam, S. M., Mohebbullah, M., & Jamal, M. S. I. (2021). Antibacterial wound dressing electrospun nanofibrous material from polyvinyl alcohol, honey and Curcumin longa extract. Journal of Industrial Textiles, 51(3), 455–469. https://doi.org/10.1177/1528083720904379
  • Shakiba, N., & Zandstra, P. W. (2017). Engineering cell fitness: Lessons for regenerative medicine. Current Opinion in Biotechnology, 47, 7–15. https://doi.org/10.1016/j.copbio.2017.05.005
  • Sheikh, F. A., Ju, H. W., Moon, B. M., Park, H. J., Kim, J.-H., Kim, S. H., Lee, O. J., & Park, C. H. (2014). A comparative mechanical and biocompatibility study of poly (ε-caprolactone), hybrid poly (ε-caprolactone)–silk, and silk nanofibers by colloidal electrospinning technique for tissue engineering. Journal of Bioactive and Compatible Polymers, 29(5), 500–514. https://doi.org/10.1177/0883911514549717
  • Shreaz, S., Wani, W. A., Behbehani, J. M., Raja, V., Irshad, M., Karched, M., Ali, I., Siddiqi, W. A., & Hun, L. T. (2016). Cinnamaldehyde and its derivatives, a novel class of antifungal agents. Fitoterapia, 112, 116–131. https://doi.org/10.1016/j.fitote.2016.05.016
  • Sill, T. J., & Von Recum, H. A. (2008). Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials, 29(13), 1989–2006. https://doi.org/10.1016/j.biomaterials.2008.01.011
  • Silvestry-Rodriguez, N., Sicairos-Ruelas, E. E., Gerba, C. P., & Bright, K. R. (2007). Silver as a disinfectant. Reviews of Environmental Contamination and Toxicology, 191, 23–45. https://doi.org/10.1007/978-0-387-69163-3_2
  • Silvetti, T., Morandi, S., Hintersteiner, M., & Brasca, M. (2017). Use of hen egg white lysozyme in the food industry. In Egg innovations and strategies for improvements (pp. 233–242). Elsevier.
  • Singaravelu, S., Ramanathan, G., Muthukumar, T., Raja, M. D., Nagiah, N., Thyagarajan, S., Aravinthan, A., P, G., Natarajan, T. S., V N Geetha Selva, G., Kim, J.-H., & Sivagnanam, U. T. (2016). Durable keratin-based bilayered electrospun mats for wound closure. Journal of Materials Chemistry. B, 4(22), 3982–3997. https://doi.org/10.1039/c6tb00720a
  • Slawinski, M., Khoury, L. R., Sharma, S., Nowitzke, J., Gutzman, J. H., & Popa, I. (2022). Kinetic method of producing pores inside protein-based biomaterials without compromising their structural integrity. ACS Biomaterials Science & Engineering, 8(3), 1132–1142. https://doi.org/10.1021/acsbiomaterials.1c01534
  • Snyder-Talkington, B. N., Qian, Y., Castranova, V., & Guo, N. L. (2012). New perspectives for in vitro risk assessment of multiwalled carbon nanotubes: Application of coculture and bioinformatics. Journal of Toxicology and Environmental Health, Part B, 15(7), 468–492. https://doi.org/10.1080/10937404.2012.736856
  • Song, N., Chen, Y., Luo, J., Huang, L., Tian, H., Li, C., & Loor, J. J. (2020). Negative regulation of αs1-casein (csn1s1) improves β-casein content and reduces allergy potential in goat milk. Journal of Dairy Science, 103(10), 9561–9572. https://doi.org/10.3168/jds.2020-18595
  • Spurny, K. R., & Marijnissen, J. C. (1998). Nicolai Albertowich Fuchs: The pioneer of aerosol science: biography.
  • Stie, M. B., Corezzi, M., Juncos Bombin, A. D., Ajalloueian, F., Attrill, E., Pagliara, S., Jacobsen, J., Chronakis, I. S., Nielsen, H. M., & Fodera, V. (2020). Waterborne electrospinning of α-lactalbumin generates tunable and biocompatible nanofibers for drug delivery. ACS Applied Nano Materials, 3(2), 1910–1921. https://doi.org/10.1021/acsanm.9b02557
  • Subbiah, T., Bhat, G. S., Tock, R. W., Parameswaran, S., & Ramkumar, S. S. (2005). Electrospinning of nanofibers. Journal of Applied Polymer Science, 96(2), 557–569. https://doi.org/10.1002/app.21481
  • Sudheesh Kumar, P., Lakshmanan, V.-K., Anilkumar, T., Ramya, C., Reshmi, P., Unnikrishnan, A., Nair, S. V., & Jayakumar, R. (2012). Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for wound dressing: In vitro and in vivo evaluation. ACS Applied Materials & Interfaces, 4(5), 2618–2629. https://doi.org/10.1021/am300292v
  • Supaphol, P., Mit‐Uppatham, C., & Nithitanakul, M. (2005). Ultrafine electrospun polyamide‐6 fibers: Effect of emitting electrode polarity on morphology and average fiber diameter. Journal of Polymer Science Part B: Polymer Physics, 43(24), 3699–3712. https://doi.org/10.1002/polb.20671
  • Švachová, V., Vojtová, L., Pavliňák, D., Vojtek, L., Sedláková, V., Hyršl, P., Alberti, M., Jaroš, J., Hampl, A., & Jančář, J. (2016). Novel electrospun gelatin/oxycellulose nanofibers as a suitable platform for lung disease modeling. Materials Science & Engineering. C, Materials for Biological Applications, 67, 493–501. https://doi.org/10.1016/j.msec.2016.05.059
  • Tabata, Y., Hijikata, S., & Ikada, Y. (1994). Enhanced vascularization and tissue granulation by basic fibroblast growth factor impregnated in gelatin hydrogels. Journal of Controlled Release, 31(2), 189–199. https://doi.org/10.1016/0168-3659(94)00035-2
  • Takagi, K., Teshima, R., Okunuki, H., Sawada., & J., i. (2003). Comparative study of in vitro digestibility of food proteins and effect of preheating on the digestion. Biological & Pharmaceutical Bulletin, 26(7), 969–973. https://doi.org/10.1248/bpb.26.969
  • Taylor, S., Remington, B., Panda, R., Goodman, R., & Baumert, J. (2015). Detection and control of soybeans as a food allergen. In Handbook of food allergen detection and control (pp. 341–366). Elsevier.
  • Teo, W., & Ramakrishna, S. (2005). Electrospun fibre bundle made of aligned nanofibres over two fixed points. Nanotechnology, 16(9), 1878–1884. https://doi.org/10.1088/0957-4484/16/9/077
  • Thacharodi, D., & Rao, K. P. (1996). Rate-controlling biopolymer membranes as transdermal delivery systems for nifedipine: Development and in vitro evaluations. Biomaterials, 17(13), 1307–1311.
  • Thirugnanaselvam, M., Gobi, N., & Arun Karthick, S. (2013). SPI/PEO blended electrospun martrix for wound healing. Fibers and Polymers, 14(6), 965–969. https://doi.org/10.1007/s12221-013-0965-y
  • Tiwari, S. K., & Venkatraman, S. (2012). Electrospinning pure protein solutions in core–shell fibers. Polymer International, 61(10), 1549–1555. https://doi.org/10.1002/pi.4246
  • Tomaselli, S., Ramirez, D. O. S., Carletto, R. A., Varesano, A., Vineis, C., Zanzoni, S., Molinari, H., & Ragona, L. (2017). Electrospun lipid binding proteins composite nanofibers with antibacterial properties. Macromolecular Bioscience, 17(4), 1600300. https://doi.org/10.1002/mabi.201600300
  • Tomasula, P. M., Sousa, A. M. M., Liou, S.-C., Li, R., Bonnaillie, L. M., & Liu, L. S. (2016). Electrospinning of casein/pullulan blends for food-grade applications. Journal of Dairy Science, 99(3), 1837–1845. https://doi.org/10.3168/jds.2015-10374
  • Topuz, F., & Uyar, T. (2017). Electrospinning of gelatin with tunable fiber morphology from round to flat/ribbon. Materials Science & Engineering. C, Materials for Biological Applications, 80, 371–378. https://doi.org/10.1016/j.msec.2017.06.001
  • Torres-Giner, S., Gimeno-Alcaniz, J. V., Ocio, M. J., & Lagaron, J. M. (2009). Comparative performance of electrospun collagen nanofibers cross-linked by means of different methods. ACS Applied Materials & Interfaces, 1(1), 218–223. https://doi.org/10.1021/am800063x
  • Tort, S., Acartürk, F., & Beşikci, A. (2017). Evaluation of three-layered doxycycline-collagen loaded nanofiber wound dressing. International Journal of Pharmaceutics, 529(1–2), 642–653. https://doi.org/10.1016/j.ijpharm.2017.07.027
  • Tucker, N., Stanger, J. J., Staiger, M. P., Razzaq, H., & Hofman, K. (2012). The history of the science and technology of electrospinning from 1600 to 1995. Journal of Engineered Fibers and Fabrics, 7(2_suppl), 155892501200702. 155892501200702S155892501200710. https://doi.org/10.1177/155892501200702S10
  • Ullah, S., Hashmi, M., Khan, M. Q., Kharaghani, D., Saito, Y., Yamamoto, T., & Kim, I. S. (2018). Silver sulfadiazine loaded zein nanofiber mats as a novel wound dressing. RSC Advances, 9(1), 268–277. https://doi.org/10.1039/c8ra09082c
  • Unnithan, A. R., Gnanasekaran, G., Sathishkumar, Y., Lee, Y. S., & Kim, C. S. (2014). Electrospun antibacterial polyurethane–cellulose acetate–zein composite mats for wound dressing. Carbohydrate Polymers, 102, 884–892. https://doi.org/10.1016/j.carbpol.2013.10.070
  • Valenti, P., & Antonini, G. (2005). Lactoferrin. Cellular and Molecular Life Sciences: CMLS, 62(22), 2576–2587. https://doi.org/10.1007/s00018-005-5372-0
  • van den Akker, C. C., Schleeger, M., Bonn, M., & Koenderink, G. H. (2014). Structural basis for the polymorphism of β-lactoglobulin amyloid-like fibrils. In Bio-nanoimaging (pp. 333–343). Elsevier.
  • Vasconcelos, A., Freddi, G., & Cavaco-Paulo, A. (2008). Biodegradable materials based on silk fibroin and keratin. Biomacromolecules, 9(4), 1299–1305. https://doi.org/10.1021/bm7012789
  • Vega-Lugo, A.-C., & Lim, L.-T. (2009). Controlled release of allyl isothiocyanate using soy protein and poly (lactic acid) electrospun fibers. Food Research International, 42(8), 933–940. https://doi.org/10.1016/j.foodres.2009.05.005
  • Vogt, L., Liverani, L., Roether, J. A., & Boccaccini, A. R. (2018). Electrospun zein fibers incorporating poly (glycerol sebacate) for soft tissue engineering. Nanomaterials, 8(3), 150. https://doi.org/10.3390/nano8030150
  • Wang, S., Marcone, M. F., Barbut, S., & Lim, L.-T. (2013). Electrospun soy protein isolate-based fiber fortified with anthocyanin-rich red raspberry (Rubus strigosus) extracts. Food Research International, 52(2), 467–472. https://doi.org/10.1016/j.foodres.2012.12.036
  • Wang, S., Zhang, Y., Wang, H., & Dong, Z. (2011). Preparation, characterization and biocompatibility of electrospinning heparin-modified silk fibroin nanofibers. International Journal of Biological Macromolecules, 48(2), 345–353. https://doi.org/10.1016/j.ijbiomac.2010.12.008
  • Wang, S.-D., Ma, Q., Wang, K., & Chen, H.-W. (2018). Improving antibacterial activity and biocompatibility of bioinspired electrospinning silk fibroin nanofibers modified by graphene oxide. ACS Omega, 3(1), 406–413. https://doi.org/10.1021/acsomega.7b01210
  • Wang, Y., & Chen, L. (2012). Electrospinning of prolamin proteins in acetic acid: The effects of protein conformation and aggregation in solution. Macromolecular Materials and Engineering, 297(9), 902–913. https://doi.org/10.1002/mame.201100410
  • Wang, Y., & Padua, G. W. (2012). Nanoscale characterization of zein self-assembly. Langmuir : The ACS Journal of Surfaces and Colloids, 28(5), 2429–2435. https://doi.org/10.1021/la204204j
  • Wang, Y., Qian, Y., Zhang, Z., Lyu, L., & Wang, Y. (2021). Role of ethanol on crosslinking and properties of electrospun gelatin/pullulan nanofibrous membranes. The Journal of the Textile Institute, 1–8.
  • Wang, Z., Wang, H., Xiong, J., Li, J., Miao, X., Lan, X., Liu, X., Wang, W., Cai, N., & Tang, Y. (2021). Fabrication and in vitro evaluation of PCL/gelatin hierarchical scaffolds based on melt electrospinning writing and solution electrospinning for bone regeneration. Materials Science & Engineering. C, Materials for Biological Applications, 128, 112287. https://doi.org/10.1016/j.msec.2021.112287
  • Wangtueai, S., & Noomhorm, A. (2009). Processing optimization and characterization of gelatin from lizardfish (Saurida spp.) scales. LWT-Food Science and Technology, 42(4), 825–834.
  • Wei, K., Li, Y., Mugishima, H., Teramoto, A., & Abe, K. (2012). Fabrication of core‐sheath structured fibers for model drug release and tissue engineering by emulsion electrospinning. Biotechnology Journal, 7(5), 677–685. https://doi.org/10.1002/biot.201000473
  • Weiwei, B., Youzhu, Z., Guibo, Y., & Jialin, W. (2008). The structure and property of the electrospinning silk fibroin/gelatin blend nanofibers. e-Polymers, 8(1). https://doi.org/10.1515/epoly.2008.8.1.1131
  • wen Jia, X., yu Qin, Z., xin Xu, J., hua Kong, B., Liu, Q., & Wang, H. (2020). Preparation and characterization of pea protein isolate-pullulan blend electrospun nanofiber films. International Journal of Biological Macromolecules, 157, 641–647.
  • Wen, C., Zhang, J., Zhang, H., & Duan, Y. (2022). New perspective on natural plant protein-based nanocarriers for bioactive ingredients delivery. Foods, 11(12), 1701. https://doi.org/10.3390/foods11121701
  • Wheeldon, I., Farhadi, A., Bick, A. G., Jabbari, E., & Khademhosseini, A. (2011). Nanoscale tissue engineering: Spatial control over cell-materials interactions. Nanotechnology, 22(21), 212001. https://doi.org/10.1088/0957-4484/22/21/212001
  • Wilk, S., & Benko, A. (2021). Advances in fabricating the electrospun biopolymer-based biomaterials. Journal of Functional Biomaterials, 12(2), 26. https://doi.org/10.3390/jfb12020026
  • Willerth, S. (2017). Melt electrospinning in tissue engineering. Electrospun materials for tissue engineering and biomedical applications (pp. 87–100).
  • Witte, M. B., & Barbul, A. (2002). Role of nitric oxide in wound repair. American Journal of Surgery, 183(4), 406–412. https://doi.org/10.1016/s0002-9610(02)00815-2
  • Wojcik, M., Kazimierczak, P., Belcarz, A., Wilczynska, A., Vivcharenko, V., Pajchel, L., Adaszek, L., & Przekora, A. (2022). Biocompatible curdlan-based biomaterials loaded with gentamicin and Zn-doped nano-hydroxyapatite as promising dressing materials for the treatment of infected wounds and prevention of surgical site infections. Biomaterials Advances, 139, 213006. https://doi.org/10.1016/j.bioadv.2022.213006
  • Wongkanya, R., Chuysinuan, P., Pengsuk, C., Techasakul, S., Lirdprapamongkol, K., Svasti, J., & Nooeaid, P. (2017). Electrospinning of alginate/soy protein isolated nanofibers and their release characteristics for biomedical applications. Journal of Science: Advanced Materials and Devices, 2(3), 309–316.
  • Wu, H., Zhou, Y., Yao, P., & Ding, M. (2016). Property of electrospinning silk fibroin nanofibers prepared by different dissolved methods. MATEC Web of Conferences, 67, 01011. https://doi.org/10.1051/matecconf/20166701011
  • Yang, F., & Yang, P. (2022). Biopolymer‐based membrane adsorber for removing contaminants from aqueous solution: Progress and prospects. Macromolecular Rapid Communications, 43(3), 2100669. https://doi.org/10.1002/marc.202100669
  • Yang, Y., Li, X., Qi, M., Zhou, S., & Weng, J. (2008). Release pattern and structural integrity of lysozyme encapsulated in core–sheath structured poly (dl-lactide) ultrafine fibers prepared by emulsion electrospinning. European Journal of Pharmaceutics and Biopharmaceutics: Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik e.V, 69(1), 106–116. https://doi.org/10.1016/j.ejpb.2007.10.016
  • Yao, C., Li, X., Song, T., Li, Y., & Pu, Y. (2009). Biodegradable nanofibrous membrane of zein/silk fibroin by electrospinning. Polymer International, 58(4), 396–402. https://doi.org/10.1002/pi.2544
  • Yao, Z. C., Chen, S. C., Ahmad, Z., Huang, J., Chang, M. W., & Li, J. S. (2017). Essential oil bioactive fibrous membranes prepared via coaxial electrospinning. Journal of Food Science, 82(6), 1412–1422. https://doi.org/10.1111/1750-3841.13723
  • Yarin, A., & Zussman, E. (2004). Upward needleless electrospinning of multiple nanofibers. Polymer, 45(9), 2977–2980. https://doi.org/10.1016/j.polymer.2004.02.066
  • Yıldız, A., Kara, A. A., & Acartürk, F. (2020). Peptide-protein based nanofibers in pharmaceutical and biomedical applications. International Journal of Biological Macromolecules, 148, 1084–1097. https://doi.org/10.1016/j.ijbiomac.2019.12.275
  • Yim, E. K., & Leong, K. W. (2005). Significance of synthetic nanostructures in dictating cellular response. Nanomedicine: Nanotechnology, Biology and Medicine, 1(1), 10–21. https://doi.org/10.1016/j.nano.2004.11.008
  • Young, D. S. (2006). Hyaluronic acid-based nanofibers via electrospinning.
  • Yu, J., Bi, X., Yu, B., & Chen, D. (2016). Isoflavones: Anti-inflammatory benefit and possible caveats. Nutrients, 8(6), 361. https://doi.org/10.3390/nu8060361
  • Yuan, J., Shen, J., & Kang, I. K. (2008). Fabrication of protein‐doped PLA composite nanofibrous scaffolds for tissue engineering. Polymer International, 57(10), 1188–1193. https://doi.org/10.1002/pi.2463
  • Yuan, X., Zhang, Y., Dong, C., & Sheng, J. (2004). Morphology of ultrafine polysulfone fibers prepared by electrospinning. Polymer International, 53(11), 1704–1710. https://doi.org/10.1002/pi.1538
  • Zandi, N., Lotfi, R., Tamjid, E., Shokrgozar, M. A., & Simchi, A. (2020). Core-sheath gelatin based electrospun nanofibers for dual delivery release of biomolecules and therapeutics. Materials Science and Engineering: C, 108, 110432. https://doi.org/10.1016/j.msec.2019.110432
  • Zargham, S., Bazgir, S., Tavakoli, A., Rashidi, A. S., & Damerchely, R. (2012). The effect of flow rate on morphology and deposition area of electrospun nylon 6 nanofiber. Journal of Engineered Fibers and Fabrics, 7(4), 155892501200700. https://doi.org/10.1177/155892501200700414
  • Zeleny, J. (1914). The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces. Physical Review, 3(2), 69–91. https://doi.org/10.1103/PhysRev.3.69
  • Zhang, B., Yan, X., He, H.-W., Yu, M., Ning, X., & Long, Y.-Z. (2017). Solvent-free electrospinning: Opportunities and challenges. Polymer Chemistry, 8(2), 333–352. https://doi.org/10.1039/C6PY01898J
  • Zhang, C., Yuan, X., Wu, L., Han, Y., & Sheng, J. (2005). Study on morphology of electrospun poly (vinyl alcohol) mats. European Polymer Journal, 41(3), 423–432. https://doi.org/10.1016/j.eurpolymj.2004.10.027
  • Zhang, H., Zhou, L., & Zhang, W. (2014). Control of scaffold degradation in tissue engineering: A review. Tissue Engineering. Part B, Reviews, 20(5), 492–502. https://doi.org/10.1089/ten.TEB.2013.0452
  • Zhang, K.-H., Yu, Q.-Z., & Mo, X.-M. (2011). Fabrication and intermolecular interactions of silk fibroin/hydroxybutyl chitosan blended nanofibers. International Journal of Molecular Sciences, 12(4), 2187–2199. https://doi.org/10.3390/ijms12042187
  • Zhang, W., Ronca, S., & Mele, E. (2017). Electrospun nanofibres containing antimicrobial plant extracts. Nanomaterials, 7(2), 42. https://doi.org/10.3390/nano7020042
  • Zhang, X., Cai, Q., Liu, H., Zhang, S., Wei, Y., Yang, X., Lin, Y., Yang, Z., & Deng, X. (2012). Calcium ion release and osteoblastic behavior of gelatin/beta-tricalcium phosphate composite nanofibers fabricated by electrospinning. Materials Letters, 73, 172–175. https://doi.org/10.1016/j.matlet.2012.01.049
  • Zhang, X., Khan, M. M. R., Yamamoto, T., Tsukada, M., & Morikawa, H. (2012). Fabrication of silk sericin nanofibers from a silk sericin-hope cocoon with electrospinning method. International Journal of Biological Macromolecules, 50(2), 337–347. https://doi.org/10.1016/j.ijbiomac.2011.12.006
  • Zhang, X., Tang, K., & Zheng, X. (2015). Electrospinning and rheological behavior of poly (vinyl alcohol)/collagen blended solutions. Journal of Wuhan University of Technology-Mater. Sci. Ed, 30(4), 840–846. https://doi.org/10.1007/s11595-015-1239-x
  • Zhang, Y., Zhang, X., Silva, S. R. P., Ding, B., Zhang, P., & Shao, G. (2022). Lithium–sulfur batteries meet electrospinning: Recent advances and the key parameters for high gravimetric and volume energy density. Advanced Science, 9(4), 2103879. https://doi.org/10.1002/advs.202103879
  • Zheng, H., Yan, G., Marquez, S., Andler, S., Dersjant-Li, Y., & de Mejia, E. G. (2020). Molecular size and immunoreactivity of ethanol extracted soybean protein concentrate in comparison with other products. Process Biochemistry, 96, 122–130. https://doi.org/10.1016/j.procbio.2020.06.007
  • Zhong, W. (2016). Nanofibres for medical textiles. In Advances in smart medical textiles (pp. 57–70). Elsevier.
  • Zhu, J., Huang, W., Zhang, Q., Ling, S., Chen, Y., & Kaplan, D. L. (2016). Aqueous-based coaxial electrospinning of genetically engineered silk elastin core-shell nanofibers. Materials, 9(4), 221. https://doi.org/10.3390/ma9040221
  • Zong, X., Kim, K., Fang, D., Ran, S., Hsiao, B. S., & Chu, B. (2002). Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer, 43(16), 4403–4412. https://doi.org/10.1016/S0032-3861(02)00275-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.