259
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Performance analysis of shell fabric of fire protective clothing for different process parameters

, , &
Pages 1682-1691 | Received 18 Apr 2022, Accepted 04 Oct 2022, Published online: 14 Nov 2022

References

  • Ba-Abbad, M. M., Chai, P. V., Takriff, M. S., Benamor, A., & Mohammad, A. W. (2015). Optimization of nickel oxide nanoparticle synthesis through the sol-gel method using Box–Behnken design. Materials & Design, 86, 948–956. https://doi.org/10.1016/j.matdes.2015.07.176
  • Barker, R. L., & Guerth-Schacher, C. (2002). Moisture Absorption in Advanced Heat Resistant Protective Clothing Systems [Paper presentation]. Bruges, Belgium. Proceedings of the 2nd Autex World Textile Conference,” July 1–3, 2002.
  • Barker, R. L., Guerth-Schacher, C., Grimes, R. V., & Hamouda, H. (2006). Effects of moisture on the thermal protective performance of firefighter protective clothing in low-level radiant heat exposures. Textile Research Journal, 76(1), 27–31. https://doi.org/10.1177/0040517506053947
  • Barker, R. L., & Heniford, R. C. (2011). Factors affecting the thermal insulation and abrasion resistance of heat resistant hydro-entangled nonwoven batting materials for use in firefighter turnout suit thermal liner systems. Journal of Engineered Fibers and Fabrics, 6(1), 155892501100600–155892501100610. https://doi.org/10.1177/155892501100600101
  • Basak, S., Samanta, K. K., Chattopadhyay, S. K., Pandit, P., & Maiti, S. (2016). Green fire retardant finishing and combined dyeing of proteinous wool fabric. Coloration Technology, 132(2), 135–143. https://doi.org/10.1111/cote.12200
  • Bosco, F., Carletto, R. A., Alongi, J., Marmo, L., Di Blasio, A., & Malucelli, G. (2013). Thermal stability and flame resistance of cotton fabrics treated with whey proteins. Carbohydrate Polymers, 94(1), 372–377. https://doi.org/10.1016/j.carbpol.2012.12.075
  • Chakraborty, S., & Kothari, V. (2017). Effect of moisture and water on thermal protective performance of multilayered fabric assemblies for firefighters. Indian Journal of Fibre & Textile Research (IJFTR), 42(1), 94–99.
  • Cn Nelson, N. H. (2000). Performance of protective clothing: issues and priorities for the 21. Performance of Protective Clothing: Issues and Priorities for the 21, Seventh vo. https://doi.org/10.1520/stp1386-eb
  • Das, T., Das, A., & Alagirusamy, R. (2022). Study on thermal protective performance of thermal liner in a multi-layer clothing under radiant heat exposure. Journal of Industrial Textiles, 51(5_suppl), 8208S–8226S. https://doi.org/10.1177/15280837221094057
  • Ertekin, M., Ertekin, G., & Marmaralı, A. (2018). Analysis of thermal comfort properties of fabrics for protective applications. The Journal of the Textile Institute, 109(8), 1091–1098. https://doi.org/10.1080/00405000.2017.1402425
  • Ertekýn, M., & Kirtay, E. (2014). Burning behaviour and mechanical properties of fabrics woven with ring spun aramid and flame retardant polyester yarns. Tekstil ve Konfeksiyon, 24(3), 286–290.
  • Ferreira, S. L. C., Bruns, R. E., Ferreira, H. S., Matos, G. D., David, J. M., Brandão, G. C., da Silva, E. G. P., Portugal, L. A., dos Reis, P. S., Souza, A. S., & dos Santos, W. N. L. (2007). Box–Behnken design: An alternative for the optimization of analytical methods. Analytica Chimica Acta, 597(2), 179–186. https://doi.org/10.1016/j.aca.2007.07.011
  • Fu, M., Yuan, M. Q., & Weng, W. G. (2015). Modeling of heat and moisture transfer within firefighter protective clothing with the moisture absorption of thermal radiation. International Journal of Thermal Sciences, 96, 201–210. https://doi.org/10.1016/j.ijthermalsci.2015.05.008
  • Hirschler, M. M. (1997). Analysis of thermal performance of two fabrics intended for use as protective clothing. Fire and Materials, 21(3), 115–121. https://doi.org/10.1002/(SICI)1099-1018(199705/06)21:3 < 115::AID-FAM599 > 3.0.CO;2-4
  • Kothari, V. K., & Chakraborty, S. (2015). Thermal protective performance of clothing exposed to radiant heat. The Journal of the Textile Institute, 106(12), 1388–1393. https://doi.org/10.1080/00405000.2014.995929
  • Kousha, M., Daneshvar, E., Dopeikar, H., Taghavi, D., & Bhatnagar, A. (2012). Box–Behnken design optimization of Acid Black 1 dye biosorption by different brown macroalgae. Chemical Engineering Journal, 179, 158–168. https://doi.org/10.1016/j.cej.2011.10.073
  • Lawson, L. K., Crown, E. M., Ackerman, M. Y., & Dale, J. D. (2004). Moisture effects in heat transfer through clothing systems for wildland firefighters. International Journal of Occupational Safety and Ergonomics: JOSE, 10(3), 227–238. https://doi.org/10.1080/10803548.2004.11076610
  • Lee, Y. M., & Barker, R. L. (1986). Effect of moisture on the thermal protective performance of heat-resistant fabrics. Journal of Fire Sciences, 4(5), 315–331. https://doi.org/10.1177/073490418600400502
  • Lu, Y., Li, J., Li, X., & Song, G. (2013). The effect of air gaps in moist protective clothing on protection from heat and flame. Journal of Fire Sciences, 31(2), 99–111. https://doi.org/10.1177/0734904112457342
  • Malaquias, A. F., Neves, S. F., & Campos, J. B. L. M. (2022). The impact of water on firefighter protective clothing thermal performance and steam burn occurrence in firefighters. Fire Safety Journal, 127(December), 103506. https://doi.org/10.1016/j.firesaf.2021.103506
  • Nayak, R., Houshyar, S., & Padhye, R. (2014). Recent trends and future scope in the protection and comfort of fire-fighters’ personal protective clothing. Fire Science Reviews, 3(1), 1–19. https://doi.org/10.1186/s40038-014-0004-0
  • Paskaluk, S., Sati, R., Crown, E. M., Doug Dale, J., & Ackerman, M. (2011). Thermal protective performance of protective clothing used for low radiant heat protection. Textile Research Journal, 81(3), 311–323. https://doi.org/10.1177/0040517510380108
  • Prasad, K., Twilley, W. H., & Lawson, J. R. (2002). Thermal performance of fire fighters’ protective clothing: Numerical study of transient heat and water vapor transfer. Thermal Performance of Fire Fighters’ Protective Clothing: Numerical Study of Transient Heat and Water Vapor Transfer, June, 1–32.
  • Rathour, R., Das, A., & Alagirusamy, R. (2022). Studies on the influence of process parameters on the protection performance of the outer layer of fire-protective clothing. Journal of Industrial Textiles, 51(5_suppl), 8107S–8126S. https://doi.org/10.1177/15280837211054582
  • Rossi, R. (2003). Fire fighting and its influence on the body. Ergonomics, 46(10), 1017–1033. https://doi.org/10.1080/0014013031000121968
  • Shaid, A., & Wang, L. P. R. (2018). Textiles for firefighting protective clothing. In Firefighters’ clothing and equipment (pp. 1–30). CRC Press.
  • Song, G., Cao, W., & Gholamreza, F. (2011). Analyzing stored thermal energy and thermal protective performance of clothing. Textile Research Journal, 81(11), 1124–1138. https://doi.org/10.1177/0040517511398943
  • Song, G., Ding, D., & Chitrphiromsri, P. (2008). Numerical simulations of heat and moisture transport in thermal protective clothing under flash fire conditions. International Journal of Occupational Safety and Ergonomics: JOSE, 14(1), 89–106. https://doi.org/10.1080/10803548.2008.11076752
  • Song, G., Lu, Y., & Gholamreza, F. (2014). Clothing for protection against hot-liquid splash and steam hazards. Protective Clothing: Managing Thermal Stress, 90–111. https://doi.org/10.1533/9781782420408.1.90
  • Sonnier, R., Taguet, A., Ferry, L., & L.-C, J. (2018). Towards Bio-based Flame Retardant Polymers. Springer International Publishing.
  • Srinivasan, T., Palanikumar, K., Rajagopal, K., & Latha, B. (2017). Optimization of delamination factor in drilling GFR–polypropylene composites. Materials and Manufacturing Processes, 32(2), 226–233. https://doi.org/10.1080/10426914.2016.1151038
  • Srinu Babu, G., Shiva Kiran, R. R., Lokeswari, N., & Jaya Raju, K. (2007). Optimization of protease production from Aspergillus oryzae sp. using Box–Behnken experimental design. E-Journal of Chemistry, 4(2), 145–153. https://doi.org/10.1155/2007/254613
  • Su, Y., Tian, M., Li, J., Zhang, X., & Zhao, P. (2022). Numerical study of heat and moisture transfer in thermal protective clothing against a coupled thermal hazardous environment. International Journal of Heat and Mass Transfer, 194, 122989. https://doi.org/10.1016/j.ijheatmasstransfer.2022.122989
  • Zhang, H., Song, G., Ren, H., & Cao, J. (2018). The effects of moisture on the thermal protective performance of firefighter protective clothing under medium intensity radiant exposure. Textile Research Journal, 88(8), 847–862. https://doi.org/10.1177/0040517517690620
  • Zhu, F. L., & Zhang, W. Y. (2009). Modeling heat transfer for heat-resistant fabrics considering pyrolysis effect under an external heat flux. Journal of Fire Sciences, 27(1), 81–96. https://doi.org/10.1177/0734904108094960

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.