103
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Preparation and properties of nano-MgO/HDTMS super hydrophobic multifunctional cotton

, , , , &
Pages 1030-1038 | Received 11 Oct 2022, Accepted 20 Apr 2023, Published online: 05 May 2023

References

  • Baidya, A., Ganayee, M. A., Jakka Ravindran, S., Tam, K. C., Das, S. K., Ras, R. H., & Pradeep, T. (2017). Organic solvent-free fabrication of durable and multifunctional superhydrophobic paper from waterborne fluorinated cellulose nanofiber building blocks. ACS Nano, 11(11), 11091–11099. https://doi.org/10.1021/acsnano.7b05170
  • Basak, M., Rahman, M. L., Ahmed, M. F., Biswas, B., & Sharmin, N. (2022). The use of X-ray diffraction peak profile analysis to determine the structural parameters of cobalt ferrite nanoparticles using debye-scherrer, williamson-hall, halder-wagner and size-strain plot: Different precipitating agent approach. Journal of Alloys and Compounds, 895, 162694. https://doi.org/10.1016/j.jallcom.2021.162694
  • Chen, H., Shen, Y., He, Z., Wu, Z., & Xie, X. (2020). Facilely fabricating superhydrophobic coated-mesh materials for effective oil-water separation: Effect of mesh size towards various organic liquids. Journal of Materials Science & Technology, 51, 151–160. https://doi.org/10.1016/j.jmst.2020.03.021
  • Crick, C. R. (2018). Approaches for evaluating and engineering resilient superhydrophobic materials. Superhydrophobic surfaces-fabrications to practical applications. IntechOpen.
  • Cui, X., Yan, Y., Huang, J., Qiu, X., Zhang, P., Chen, Y., Hu, Z., & Liang, X. (2022). A substrate-independent isocyanate-modified polydimethylsiloxane coating harvesting mechanical durability, self-healing ability and low surface energy with anti-corrosion/biofouling potential. Applied Surface Science, 579, 152186. https://doi.org/10.1016/j.apsusc.2021.152186
  • Dong, C., Cairney, J., Sun, Q., Maddan, O. L., He, G., & Deng, Y. (2010). Investigation of Mg(OH)2 nanoparticles as an antibacterial agent. Journal of Nanoparticle Research, 12(6), 2101–2109. https://doi.org/10.1007/s11051-009-9769-9
  • Elmotasem, H., Farag, H. K., & Salama, A. A. (2018). In vitro and in vivo evaluation of an oral sustained release hepatoprotective caffeine loaded w/o Pickering emulsion formula–Containing wheat germ oil and stabilized by magnesium oxide nanoparticles. International Journal of Pharmaceutics, 547(1–2), 83–96. https://doi.org/10.1016/j.ijpharm.2018.05.038
  • Gong, H., Pang, H., Du, M., & Chen, Z. (2021). Fabrication of a superhydrophobic mixed matrix PVDF-SiO2-HDTMS hollow fiber membrane for membrane contact carbon dioxide absorption. Cleaner Engineering and Technology, 5, 100278. https://doi.org/10.1016/j.clet.2021.100278
  • He, Y., Zhou, Y., Cai, J., Feng, Y., Luo, B., & Liu, M. (2022). Facile fabrication of hydrophobic paper by HDTMS modified chitin nanocrystals coating for food packaging. Food Hydrocolloids, 133, 107915. https://doi.org/10.1016/j.foodhyd.2022.107915
  • Huang, J., Cai, P., Li, M., Wu, Q., Li, Q., & Wang, S. (2020). Preparation of CNF/PDMS superhydrophobic coatings with good abrasion resistance using a one-step spray method. Materials, 13(23), 5380. https://doi.org/10.3390/ma13235380
  • Kundu, D., Banerjee, D., Ghosh, S., Das, N. S., Thakur, S., Das, B., & Chattopadhyay, K. K. (2019). Plasma enhanced chemical vapour deposited amorphous carbon coating for hydrophobicity enhancement in commercial cotton fabrics. Physica E: Low-Dimensional Systems and Nanostructures, 114, 113594. https://doi.org/10.1016/j.physe.2019.113594
  • Li, B., Dong, Y., & Li, L. (2015). Preparation and catalytic performance of Fe (III)-citric acid-modified cotton fiber complex as a novel cellulose fiber-supported heterogeneous photo-fenton catalyst. Cellulose, 22(2), 1295–1309. https://doi.org/10.1007/s10570-015-0562-x
  • Li, Y., Li, L., & Sun, J. (2010). Bioinspired self‐healing superhydrophobic coatings. Angewandte Chemie, 122(35), 6265–6269. https://doi.org/10.1002/ange.201001258
  • Liu, L., Ma, Z., Zhu, M., Liu, L., Dai, J., Shi, Y., Gao, J., Dinh, T., Nguyen, T., Tang, L. C., & Song, P. (2023). Superhydrophobic self-extinguishing cotton fabrics for electromagnetic interference shielding and human motion detection. Journal of Materials Science & Technology, 132, 59–68. https://doi.org/10.1016/j.jmst.2022.05.036
  • Lu, L., Zhang, L., Zhang, X., Wu, Z., Huan, S., Shen, G., & Yu, R. (2010). A MgO nanoparticles composite matrix‐based electrochemical biosensor for hydrogen peroxide with high sensitivity. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 22(4), 471–477. https://doi.org/10.1002/elan.200900429
  • Nakagawa, T. N. T., & Soga, M. S. M. (1997). Contact angle and atomic force microscopy study of reactions of n-alkyltrichlorosilanes with muscovite micas exposed to water vapor plasmas with various power densities. Japanese Journal of Applied Physics, 36(11R), 6915. https://doi.org/10.1143/JJAP.36.6915
  • Ou, J., Wang, F., Li, W., Yan, M., & Amirfazli, A. (2020). Methyltrimethoxysilane as a multipurpose chemical for durable superhydrophobic cotton fabric. Progress in Organic Coatings, 146, 105700. https://doi.org/10.1016/j.porgcoat.2020.105700
  • Pal, S., Mondal, S., Pal, P., Das, A., & Maity, J. (2022). Fabrication of AgNPs/Silane coated mechanical and washing durable hydrophobic cotton textile for self-cleaning and oil-water separation application. Journal of the Indian Chemical Society, 99(1), 100283. https://doi.org/10.1016/j.jics.2021.100283
  • Patil, G. D., Patil, A. H., Jadhav, S. A., Patil, C. R., & Patil, P. S. (2019). A new method to prepare superhydrophobic cotton fabrics by post-coating surface modification of ZnO nanoparticles. Materials Letters, 255, 126562. https://doi.org/10.1016/j.matlet.2019.126562
  • Polanski, M., & Bystrzycki, J. (2009). Comparative studies of the influence of different Nano-sized metal oxides on the hydrogen sorption properties of magnesium hydride. Journal of Alloys and Compounds, 486(1–2), 697–701. https://doi.org/10.1016/j.jallcom.2009.07.042
  • Prasad, V., Sekar, K., & Joseph, M. A. (2021). Mechanical and water absorption properties of nano TiO2 coated flax fibre epoxy composites. Construction and Building Materials, 284, 122803. https://doi.org/10.1016/j.conbuildmat.2021.122803
  • Razavi, S. M. R., Oh, J., Sett, S., Feng, L., Yan, X., Hoque, M. J., Liu, A., Haasch, R. T., Masoomi, M., Bagheri, R., & Miljkovic, N. (2017). Superhydrophobic surfaces made from naturally derived hydrophobic materials. ACS Sustainable Chemistry & Engineering, 5(12), 11362–11370. https://doi.org/10.1021/acssuschemeng.7b02424
  • Sawai, J., Kojima, H., Igarashi, H., Hashimoto, A., Shoji, S., Sawaki, T., Hakoda, A., Kawada, E., Kokugan, T., & Shimizu, M. (2000). Antibacterial characteristics of magnesium oxide powder. World Journal of Microbiology and Biotechnology, 16(2), 187–194. https://doi.org/10.1023/A:1008916209784
  • Shen, L., Hu, H., Wang, S., & Fu, H. (2019). Preparation of super hydrophobic mMoS2/PDMS coating for fabrics. Reactive and Functional Polymers, 143, 104315. https://doi.org/10.1016/j.reactfunctpolym.2019.104315
  • Singh, V., Sheng, Y. J., & Tsao, H. K. (2018). Facile fabrication of superhydrophobic copper mesh for oil/water separation and theoretical principle for separation design. Journal of the Taiwan Institute of Chemical Engineers, 87, 150–157. https://doi.org/10.1016/j.jtice.2018.03.025
  • Tindale, J. J., & Ragogna, P. J. (2009). Highly fluorinated phosphonium ionic liquids: Novel media for the generation of superhydrophobic coatings. Chemical Communications, 14, 1831–1833. https://doi.org/10.1039/b821174d
  • Wang, L., Zang, L., Zhang, S., Chang, J., Shen, F., Zhang, Y., & Sun, L. (2022). Superhydrophobic fibers with strong adhesion to water for oil/water separation. Journal of the Taiwan Institute of Chemical Engineers, 131, 104166. https://doi.org/10.1016/j.jtice.2021.104166
  • Wang, X., Chai, Y., & Liu, J. (2013). Formation of highly hydrophobic wood surfaces using silica nanoparticles modified with long-chain alkylsilane. Holzforschung, 67(6), 667–672. https://doi.org/10.1515/hf-2012-0153
  • Wang, X., Ding, H., Wang, C., Zhou, R., Li, Y., Li, W., & Ao, W. (2021). Self-healing superhydrophobic A-SiO2/N-TiO2@ HDTMS coating with self-cleaning property. Applied Surface Science, 567, 150808. https://doi.org/10.1016/j.apsusc.2021.150808
  • Wu, J., Li, J., Deng, B., Jiang, H., Wang, Z., Yu, M., Li, L., Xing, C., & Li, Y. (2013). Self-healing of the superhydrophobicity by ironing for the abrasion durable superhydrophobic cotton fabrics. Scientific Reports, 3(1), 1–6. https://doi.org/10.1038/srep02951
  • Zhao, Y., Tang, Y., Wang, X., & Lin, T. (2010). Superhydrophobic cotton fabric fabricated by electrostatic assembly of silica nanoparticles and its remarkable buoyancy. Applied Surface Science, 256(22), 6736–6742. https://doi.org/10.1016/j.apsusc.2010.04.082

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.