73
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

General method to digitalize multi-layer woven structure

ORCID Icon, , , , , , & show all
Pages 1039-1047 | Received 14 Jun 2022, Accepted 20 Apr 2023, Published online: 05 May 2023

References

  • Boussu, F., Cristian, I., & Nauman, S. (2015). General definition of 3D warp interlock fabric architecture. Composite Part B: Engineering, 81, 171–188. https://doi.org/10.1016/j.compositesb.2015.07.013
  • Bussetta, P., & Correia, N. (2018). Numerical forming of continuous fibre reinforced composite material: A review. Composite Part A: Applied Science and Manufacturing, 113, 12–31. https://doi.org/10.1016/j.compositesa.2018.07.010
  • Byun, J. H., & Chou, T. W. (1989). Modelling and characterization of textile structural composites: A review. Journal of Strain Analysis for Engineering Design, 24(4), 253–262. https://doi.org/10.1243/03093247V244253
  • Callus, P. J., Mouritz, A. P., Bannister, M. K., & Leong, K. H. (1999). Tensile properties and failure mechanisms of 3D woven GRP composites. Composite Part A: Applied Science and Manufacturing, 30(11), 1277–1287. https://doi.org/10.1016/S1359-835X(99)00033-0
  • Gatouillat, S., Bareggi, A., Vidal-Sallé, E., & Boisse, P. (2013). Meso modelling for composite preform shaping – Simulation of the loss of cohesion of the woven fibre network. Composite Part A: Applied Science and Manufacturing, 54, 135–144. https://doi.org/10.1016/j.compositesa.2013.07.010
  • Gereke, T., & Cherif, C. (2019). A review of numerical models for 3D woven composite reinforcements. Composite Structures, 209, 60–66. https://doi.org/10.1016/j.compstruct.2018.10.085
  • Gerlach, R., Siviour, C. R., Wiegand, J., & Petrinic, N. (2012). In-plane and through-thickness properties, failure modes, damage and delamination in 3D woven carbon fibre composites subjected to impact loading. Composites Science and Technology, 72(3), 397–411. https://doi.org/10.1016/j.compscitech.2011.11.032
  • Gras, R., Leclerc, H., Hild, F., Roux, S., & Schneider, J. (2015). Identification of a set of macroscopic elastic parameters in a 3D woven composite: Uncertainty analysis and regularization. International Journal of Solids and Structures, 55, 2–16. https://doi.org/10.1016/j.ijsolstr.2013.12.023
  • Huang, J., Zhao, Q., Feng, Y., Zhou, H., Sun, F., Wang, K., Li, C., Zhang, L., & Sun, X. (2021). Effect of microcracks on the tensile properties of 3D woven composites. Coatings, 11(7), 794. https://doi.org/10.3390/coatings11070794
  • Lomov, S. V., Huysmans, G., Luo, Y., Parnas, R. S., Prodromou, A., Verpoest, I., & Phelan, F. R. (2001). Textile composites: Modelling strategies. Composite Part A: Applied Science and Manufacturing, 32(10), 1379–1394. https://doi.org/10.1016/S1359-835X(01)00038-0
  • Mahmood, A., Wang, X., & Zhou, C. (2011). Modeling strategies of 3D woven composites: A review. Composite Structures, 93(8), 1947–1963.
  • Marsh, G. (2012). Aero engines lose weight thanks to composites. Reinforced Plastics, 56(6), 32–35. https://doi.org/10.1016/S0034-3617(12)70146-7
  • Nguyen, Q. T., Vidal-Sallé, E., Boisse, P., Park, C. H., Saouab, A., Bréard, J., & Hivet, G. (2013). Mesoscopic scale analyses of textile composite reinforcement compaction. Composite Part B: Engineering, 44(1), 231–241. https://doi.org/10.1016/j.compositesb.2012.05.028
  • Stig, F., & Hallström, S. (2013). Influence of crimp on 3D-woven fibre reinforced composites. Composite Structures, 95, 114–122. https://doi.org/10.1016/j.compstruct.2012.07.022
  • Tan, P., Tong, L., & Steven, G. P. (1997). Modelling for predicting the mechanical properties of textile composites: A review. Composite Part A: Applied Science and Manufacturing, 28(11), 903–922. https://doi.org/10.1016/S1359-835X(97)00069-9
  • Wielhorski, Y., Mendoza, A., Rubino, M., & Roux, S. (2022). Numerical modeling of 3D woven composite reinforcements: A review. Composite Part A: Applied Science and Manufacturing, 154, 106729. https://doi.org/10.1016/j.compositesa.2021.106729
  • Xu, M., Sitnikova, E., & Li, S. (2020). Unification and parameterisation of 2D and 3D weaves and the formulation of a unit cell for composites made of such preforms. Composite Part A: Applied Science and Manufacturing, 133, 105868. https://doi.org/10.1016/j.compositesa.2020.105868
  • Younes, R., & Zaki, W. (2011). Optimal weaving for 2.5D interlocks. Composite Structures, 93(4), 1255–1264. https://doi.org/10.1016/j.compstruct.2010.10.013
  • Zangenberg, J., Brøndsted, P., & Koefoed, M. (2014). Design of a fibrous composite preform for wind turbine rotor blades. Materials and Design, 56, 635–641. https://doi.org/10.1016/j.matdes.2013.11.036

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.