650
Views
4
CrossRef citations to date
0
Altmetric
Review Articles

A systematic review of biodegradable materials in the textile and apparel industry

, ORCID Icon, , &
Pages 1173-1192 | Received 25 Aug 2022, Accepted 07 May 2023, Published online: 23 May 2023

References

  • Aguila, Y. (2020). A global pact for the environment: The logical outcome of 50 years of international environmental law [Article]. Sustainability, 12(14), 5636. https://doi.org/10.3390/su12145636
  • Ahmed, A. T. M. F., Islam, M. Z., Mahmud, M. S., Sarker, M. E., & Islam, M. R. (2022). Hemp as a potential raw material toward a sustainable world: A review. Heliyon, 8(1), e08753. https://doi.org/10.1016/j.heliyon.2022.e08753
  • Ahmed, W. A. H., & MacCarthy, B. L. (2021). Blockchain-enabled supply chain traceability in the textile and apparel supply chain: A case study of the fiber producer, lenzing [Article]. Sustainability, 13(19), 10496. https://doi.org/10.3390/su131910496
  • Allinson, G., Halter, J., Schatz, A., & Zaro, A. (2022). Preferred fiber product mapping and climate impact assessment.
  • Alvarez, J., Lawinska, K., & Falkiewicz-Dulik, M. (2020). Quality assessment of viscose bamboo fabrics intended for use inside children’s and special footwear [article]. Fibres & Textiles in Eastern Europe, 28(4), 82–88.
  • Amulya, K., Katakojwala, R., Ramakrishna, S., & Venkata Mohan, S. (2021). 2021/03/01/ Low carbon biodegradable polymer matrices for sustainable future. Composites Part C: Open Access, 4, 100111. https://doi.org/10.1016/j.jcomc.2021.100111
  • Anam, A. The pioneers of innovative natural textiles from waste pineapple leaves. Retrieved March 18, 2022 from https://www.ananas-anam.com/about-us/
  • Aragaw, T. A. (2020). Surgical face masks as a potential source for microplastic pollution in the COVID-19 scenario [Article]. Marine Pollution Bulletin, 159, 7.
  • Averesch, N. J. H., Pane, V. E., Kracke, F., Ziesack, M., Nangle, S. N., Silver, P. A., Waymouth, R. M., & Criddle, C. S. (2021). Biocatalytic Formation of Novel Polyesters with para-Hydroxyphenyl groups in the Backbone-Engineering Cupriavidus necator for production of high-performance materials from CO2 and electricity. bioRxiv 12, 472320.
  • Barani, H., & Calvimontes, A. (2014). Effects of oxygen plasma treatment on the physical and chemical properties of wool fiber surface [article]. Plasma Chemistry and Plasma Processing, 34(6), 1291–1302. https://doi.org/10.1007/s11090-014-9581-x
  • Benli, H., & Bahtiyari, M. İ. (2018). Dyeing of casein fibers with onion skin-based natural dye sources after ozonation. Ozone: Science & Engineering, 40(2), 141–147. https://doi.org/10.1080/01919512.2017.1341300
  • Bier, M., Kohn, S., & Stierand, A., eds. (2017). Investigation of eco-friendly casein fibre production methods [Paper presentation]. IOP Conference Series: Materials Science and Engineering. IOP Publishing. https://doi.org/10.1088/1757-899X/254/19/192004
  • Borkowski, K. (2019). Plastics waste litter in oceans as a driving force for regulations plastics [Article]. Polimery, 64(11/12), 759–763. https://doi.org/10.14314/polimery.2019.11.4
  • Cai, S., Hu, G., & Ren, J. (2016). Processing, properties and application of poly lactic acid (PLA) fiber. Sheng wu Gong Cheng Xue Bao = Chinese Journal of Biotechnology, 32(6), 786–797.
  • Chen, H., Wu, J., Shi, J., Zhang, W., & Wang, G. (2021). Strong and highly flexible slivers prepared from natural bamboo culm using NaOH pretreatment [Article]. Industrial Crops and Products, 170, 113773. https://doi.org/10.1016/j.indcrop.2021.113773
  • Chen, H., Wu, J., Shi, J., Zhang, W., & Wang, H. (2021). Effect of alkali treatment on microstructure and thermal stability of parenchyma cell compared with bamboo fiber [Article]. Industrial Crops and Products, 164, 113380. https://doi.org/10.1016/j.indcrop.2021.113380
  • Chen, J. Y., Sun, L., Negulescu, I. I., & Xu, B. (2017). Fabrication and evaluation of regenerated cellulose/nanoparticle fibers from lignocellulosic biomass [Article]. Biomass and Bioenergy, 101, 1–8. https://doi.org/10.1016/j.biombioe.2017.03.024
  • Chen, W., Wang, Z., Cui, Z., Pan, D., & Millington, K. (2015). Improving the photostability of silk using a covalently-bound UV absorber. Polymer Degradation and Stability, 121, 187–192. https://doi.org/10.1016/j.polymdegradstab.2015.09.007
  • Cheon, E. H., & Sung-Yeon, K. (2020). Trend analysis on sustainable fiber materials - Focused on the use of alternative materials. Journal of Basic Design & Art, 21(5), 589–600. https://doi.org/10.47294/KSBDA.21.5.42
  • Correa, J. P., Montalvo-Navarrete, J. M., & Hidalgo-Salazar, M. A. (2019). Carbon footprint considerations for biocomposite materials for sustainable products: A review. Journal of Cleaner Production, 208, 785–794. https://doi.org/10.1016/j.jclepro.2018.10.099
  • Costa, P. T., Vaz, R. Z., de Mendonça, G., Restle, J., Kroning, A. B., Ferreira, O. G. L., & Farias, P. P. (2020). Consumer perception of products from the production chain of natural coloured sheep. Small Ruminant Research, 192, 106223. https://doi.org/10.1016/j.smallrumres.2020.106223
  • da Hora, L. F., Oliveira do Nascimento, J. H., Mendonça Fontes Galvão, F., & Nunes, J. (2022). Polymer nanolatexes for dyeing of soybean fabric. Nano Select, 3(4), 841–850. https://doi.org/10.1002/nano.202100067
  • Delreux, T., & Ohler, F. (2021). Ego versus alter: Internal and external perceptions of the EU's role in global environmental negotiations [Article; Early Access]. JCMS: Journal of Common Market Studies, 59(5), 1284–1302.
  • Dissanayake, J., Torres-Quiroz, C., Mahato, J., & Park, J. (2021). Facemasks: A looming microplastic crisis [Article]. International Journal of Environmental Research and Public Health, 18(13), 9.
  • Dou, H., & Zuo, B. Q. (2015). Effect of sodium carbonate concentrations on the degumming and regeneration process of silk fibroin [Article]. The Journal of the Textile Institute, 106(3), 311–319. https://doi.org/10.1080/00405000.2014.919065
  • Egan, J., & Salmon, S. (2022). Strategies and progress in synthetic textile fiber biodegradability. SN Applied Sciences, 4(1), 1–36. https://doi.org/10.1007/s42452-021-04851-7
  • Erdogan UH, Seki Y, Selli F. (2020). 9 - Wool fibres. In R. M. Kozłowski, & M. Mackiewicz-Talarczyk (Eds). Handbook of natural fibres (2nd ed, pp. 257–278). Woodhead Publishing.
  • Fedusenko, I., & Timofeeva, G. (1995). Physicomechanical properties of acetate fibres modified with nitromethane vapors. Fibre Chemistry, 27(1), 55–58. https://doi.org/10.1007/BF00551534
  • Feng, J., Zhang, M., Hua, T., & Chan, K. H. (2020). Study of a newly structuralized meta-aramid/cotton blended yarn for fabrics with enhanced flame-resistance. Textile Research Journal, 90(5-6), 489–502. https://doi.org/10.1177/0040517519871262
  • Ferrándiz, M., Fages, E., Rojas-Lema, S., Ivorra-Martinez, J., Gomez-Caturla, J., & Torres-Giner, S. (2021). Development and characterization of weft-knitted fabrics of naturally occurring polymer fibers for sustainable and functional textiles [article]. Polymers, 13(4), 665. https://doi.org/10.3390/polym13040665
  • Ferrero, F., Mossotti, R., Innocenti, R., Coppa, F., & Periolatto, M. (2015). Enzyme-aided wool dyeing: Influence of internal lipids [Article]. Fibers and Polymers, 16(2), 363–369. https://doi.org/10.1007/s12221-015-0363-8
  • Guo, Y., Sun, Z. H., Guo, X. Q., Zhou, Y. F., Jiang, L., Chen, S. J., & Ma, J. W. (2019). Study on enzyme washing process of hemp organic cotton blended fabric. International Journal of Clothing Science and Technology, 31(1), 58–64. https://doi.org/10.1108/IJCST-08-2017-0117
  • Habibi, Y., Goffin, A.-L., Schiltz, N., Duquesne, E., Dubois, P., & Dufresne, A. (2008). Bionanocomposites based on poly (ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. Journal of Materials Chemistry, 18(41), 5002–5010. https://doi.org/10.1039/b809212e
  • Haji, A. (2020). Oct Plasma activation and chitosan attachment on cotton and wool for improvement of dyeability and fastness properties [Article]. Pigment & Resin Technology, 49(6), 483–489. https://doi.org/10.1108/PRT-02-2020-0017
  • He, Y., Zhang, N., Gong, Q., Qiu, H., Wang, W., Liu, Y., & Gao, J. (2012). Alginate/graphene oxide fibers with enhanced mechanical strength prepared by wet spinning. Carbohydrate Polymers, 88(3), 1100–1108. https://doi.org/10.1016/j.carbpol.2012.01.071
  • Hunter L. (2020). 10 - Mohair, cashmere and other animal hair fibres. In R. M. Kozłowski, & M. Mackiewicz-Talarczyk (Eds). Handbook of natural fibres (2nd ed., pp. 279–383). Woodhead Publishing.
  • Jabbar, A., Tausif, M., Tahir, H. R., Basit, A., Bhatti, M. R. A., & Abbas, G. (2020). Polylactic acid/lyocell fibre as an eco-friendly alternative to polyethylene terephthalate/cotton fibre blended yarns and knitted fabrics. The Journal of the Textile Institute, 111(1), 129–138. https://doi.org/10.1080/00405000.2019.1624070
  • Janarthanan, M., & Kumar, M. S. (2018). A modern development of bioactive wound dressing material using Chaetomorpha linum seaweed/cotton blended fabric. International Journal of Clothing Science and Technology, 30(1), 16–28. https://doi.org/10.1108/IJCST-12-2016-0142
  • Jia, F., Yin, S., Chen, L., & Chen, X. (2020). The circular economy in the textile and apparel industry: A systematic literature review. Journal of Cleaner Production, 259, 120728. 2020/06/20/https://doi.org/10.1016/j.jclepro.2020.120728
  • Jiang, Z., Zhang, N., Wang, Q., Wang, P., Yu, Y. Y., & Yuan, J. G. (2021). A controlled, highly effective and sustainable approach to the surface performance improvement of wool fibers. Journal of Molecular Liquids, 322, 114952. https://doi.org/10.1016/j.molliq.2020.114952
  • Jin, C., Wang, H.-T., Liu, Y.-N., Kang, X.-H., Liu, P., Zhang, J.-N., Jin, L.-N., Bian, S.-W., & Zhu, Q. (2018). High-performance yarn electrode materials enhanced by surface modifications of cotton fibers with graphene sheets and polyaniline nanowire arrays for all-solid-state supercapacitors [Article]. Electrochimica Acta. 270, 205–214. https://doi.org/10.1016/j.electacta.2018.03.067
  • Kan, C. W., & Yuen, C. W. M. (2009). A comparative study of wool fibre surface modified by physical and chemical methods [Article]. Fibers and Polymers, 10(5), 681–686. https://doi.org/10.1007/s12221-010-0681-9
  • Karthikeyan, G., Nalankilli, G., Shanmugasundaram, O. L., & Prakash, C. (2016). Thermal comfort properties of bamboo tencel knitted fabrics. International Journal of Clothing Science and Technology, 28(4), 420–428. https://doi.org/10.1108/IJCST-08-2015-0086
  • Kite-Powell, J. This t-shirt is made from algae and 100% biodegradable in 12 weeks 2019. Retrieved March 20, 2022, from https://www.forbes.com/sites/jenniferhicks/2019/08/25/this-t-shirt-is-made-from-algae-and-100-biodegradable-in-12-weeks/?sh=622548401875
  • Kumartasli, S., & Avinc, O. (2020). Important step in sustainability: Polyethylene terephthalate recycling and the recent developments. Sustainability in the Textile and Apparel Industries: Sourcing Synthetic and Novel Alternative Raw Materials, 1–19.
  • Lang, C. M., & Armstrong, C. M. J. (2018). Collaborative consumption: The influence of fashion leadership, need for uniqueness, and materialism on female consumers’ adoption of clothing renting and swapping. Sustainable Production and Consumption, 13, 37–47. https://doi.org/10.1016/j.spc.2017.11.005
  • Lee, K., & Kim, I. (2017). A case study on eco-friendly wedding dress made of corn starch fabric (Poly Lactic Acid). Journal of Brand Design Association of Korea, 15(4), 29–40.
  • Li, G., Liu, H., Li, T., & Wang, J. (2012). Surface modification and functionalization of silk fibroin fibers/fabric toward high performance applications. Materials Science and Engineering: C, 32(4), 627–636. https://doi.org/10.1016/j.msec.2011.12.013
  • Li, L., Huang, W., Wang, B., Wei, W., Gu, Q., & Chen, P. (2015). Properties and structure of polylactide/poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PLA/PHBV) blend fibers. Polymer, 68, 183–194. https://doi.org/10.1016/j.polymer.2015.05.024
  • Liu, X. Y., Shi, M. M., Luo, Y. H., Zhou, L. Y., Loh, Z. R., Oon, Z. J., Lian, X. J., Wan, X., Chong, F. B. L., & Tong, Y. (2020). Degradable and dissolvable thin-film materials for the applications of new-generation environmental-friendly electronic devices [Review]. Applied Sciences, 10(4), 1320. https://doi.org/10.3390/app10010028
  • Luduena, L. N., Alvarez, V. A., & Vazquez, A. (2007). Processing and microstructure of PCL/clay nanocomposites. Materials Science and Engineering: A, 460-461, 121–129. https://doi.org/10.1016/j.msea.2007.01.104
  • Majumdar, A., Mukhopadhyay, S., & Yadav, R. (2010). Thermal properties of knitted fabrics made from cotton and regenerated bamboo cellulosic fibres. International Journal of Thermal Sciences, 49(10), 2042–2048. https://doi.org/10.1016/j.ijthermalsci.2010.05.017
  • Majumdar, D., Bhanarkar, A., Rao, C., & Gouda, D. (2022). Carbon disulphide and hydrogen sulphide emissions from viscose fibre manufacturing industry: A case study in India. Atmospheric Environment: X, 13, 100157. https://doi.org/10.1016/j.aeaoa.2022.100157
  • Matusiak, M., & Kamińska, D. (2019). Investigation of selected utility properties of woven fabrics made of soybean protein fibres [article]. Fibres and Textiles in Eastern Europe, 27(6(138), 39–45. https://doi.org/10.5604/01.3001.0013.4466
  • Mendes, I. S. F., Prates, A., & Evtuguin, D. V. (2021). Production of rayon fibres from cellulosic pulps: State of the art and current developments. Carbohydrate Polymers, 273, 118466. 2021/12/01/https://doi.org/10.1016/j.carbpol.2021.118466
  • Meng, L., & Xi, L. (2010). The development and application of milk fiber and its product. Heilongjiang Textile, 121(3), 17–19.
  • Mengal, N., Syed, U., Malik, S. A., Ali Sahito, I., & Jeong, S. H. (2016). Citric acid based durable and sustainable flame retardant treatment for lyocell fabric. Carbohydrate Polymers, 153, 78–88. https://doi.org/10.1016/j.carbpol.2016.07.074
  • Merdan, N. (2017). Effects of Environmental Surface Modification Methods on Physical Properties of Hemp Fibers [Article]. Materials Science-Medziagotyra, 23(4), 416–421.
  • Moriam, K., Sawada, D., Nieminen, K., Hummel, M., Ma, Y., Rissanen, M., & Sixta, H. (2021). Towards regenerated cellulose fibers with high toughness [Article]. Cellulose, 28(15), 9547–9566. https://doi.org/10.1007/s10570-021-04134-9
  • Muposhi, A., Mpinganjira, M., & Wait, M. (2022). Considerations, benefits and unintended consequences of banning plastic shopping bags for environmental sustainability: A systematic literature review [Review; Early Access]. Waste Management and Research, 40(3), 248–261.
  • Musio, S., Mussig, J., & Amaducci, S. (2018). Optimizing hemp fiber production for high performance composite applications [Article]. Frontiers in Plant Science, 9, 1702. https://doi.org/10.3389/fpls.2018.01702
  • Nayak, L., & Mishra, S. P. (2016). Prospect of bamboo as a renewable textile fiber, historical overview, labeling, controversies and regulation. Fashion and Textiles, 3(1), 1–23. https://doi.org/10.1186/s40691-015-0054-5
  • Parajuli, P., Acharya, S., & Rumi, S. S. (2021). 4 - Regenerated cellulose in textiles: Rayon, lyocell, modal and other fibres. In M. I. H. Mondal (Ed.). Fundamentals of natural fibres and textiles (pp. 87–110). Woodhead Publishing.
  • Peters, G. M., Sandin, G., & Spak, B. (2019). Environmental prospects for mixed textile recycling in Sweden. ACS Sustainable Chemistry & Engineering, 7(13), 11682–11690. https://doi.org/10.1021/acssuschemeng.9b01742
  • Pikon, K., & Czop, M. (2014). Environmental impact of biodegradable packaging waste utilization [Review]. Polish Journal of Environmental Studies, 23(3), 969–973.
  • Prambauer, M., Wendeler, C., Weitzenböck, J., & Burgstaller, C. (2019). Biodegradable geotextiles – An overview of existing and potential materials. Geotextiles and Geomembranes, 47(1), 48–59. https://doi.org/10.1016/j.geotexmem.2018.09.006
  • Praskalo-Milanovic, J. Z., Kostic, M. M., Dimitrijevic-Brankovic, S. I., & Skundric, P. D. (2010). Silver-loaded lyocell fibers modified by TEMPO-mediated oxidation [article]. Journal of Applied Polymer Science, 117(3), NA–NA. https://doi.org/10.1002/app.32128
  • Prata, J. C., Silva, A. L. P., Walker, T. R., Duarte, A. C., & Rocha-Santos, T. (2020). COVID-19 pandemic repercussions on the use and management of plastics [Article]. Environmental Science & Technology, 54(13), 7760–7765. https://doi.org/10.1021/acs.est.0c02178
  • Primkulov, M., Khairullina, L., & Atazhanov, A. Y. (1990). Properties of acetate yarns having an increased content of elementary filaments. Fibre Chemistry, 21(4), 306–308. https://doi.org/10.1007/BF00556107
  • Provin, A. P., Regina de Aguiar Dutra, A., Machado, M. M., & Vieira Cubas, A. L. (2021). New materials for clothing: Rethinking possibilities through a sustainability approach – A review. Journal of Cleaner Production, 282, 124444. https://doi.org/10.1016/j.jclepro.2020.124444
  • Rajeshkumar, G., Arvindh Seshadri, S., Devnani, G. L., Sanjay, M. R., Siengchin, S., Prakash Maran, J., Al-Dhabi, N. A., Karuppiah, P., Mariadhas, V. A., Sivarajasekar, N., & Ronaldo Anuf, A. (2021). Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites – A comprehensive review. Journal of Cleaner Production, 310, 127483. 2021/08/10/https://doi.org/10.1016/j.jclepro.2021.127483
  • Ramesh, M. (2016). Kenaf (Hibiscus cannabinus L.) fibre based bio-materials: A review on processing and properties [Review]. Progress in Materials Science, 78-79, 1–92. https://doi.org/10.1016/j.pmatsci.2015.11.001
  • Ravikumar, M. N. V. (1999). Chitin and chitosan fibres: a review [review]. Bulletin of Materials Science, 22(5), 905–915.
  • Root, W., Aguiló-Aguayo, N., Pham, T., & Bechtold, T. (2018). Conductive layers through electroless deposition of copper on woven cellulose lyocell fabrics. Surface and Coatings Technology, 348, 13–21. https://doi.org/10.1016/j.surfcoat.2018.05.033
  • Salem Allafi, F. A., Hossain, M. S., Ab Kadir, M. O., Hakim Shaah, M. A., Lalung, J., & Ahmad, M. I. (2021). Waterless processing of sheep wool fiber in textile industry with supercritical CO2: Potential and challenges. Journal of Cleaner Production, 285, 124819. 0/https://doi.org/10.1016/j.jclepro.2020.124819
  • Schiros, T. N., Mosher, C. Z., Zhu, Y., Bina, T., Gomez, V., Lee, C. L., Lu, H. H., & Obermeyer, A. C. (2021). Bioengineering textiles across scales for a sustainable circular economy. Chem, 7(11), 2913–2926. https://doi.org/10.1016/j.chempr.2021.10.012
  • Shahid, M., Mohammad, F., Chen, G., Tang, R.-C., & Xing, T. (2016). Enzymatic processing of natural fibres: White biotechnology for sustainable development [Review]. Green Chemistry, 18(8), 2256–2281. https://doi.org/10.1039/C6GC00201C
  • Sharma, A., Nagarkar, S., Thakre, S., & Kumaraswamy, G. (2019). Structure-property relations in regenerated cellulose fibers: Comparison of fibers manufactured using viscose and lyocell processes [Article]. Cellulose, 26(6), 3655–3669. https://doi.org/10.1007/s10570-019-02352-w
  • Sheikh, Z., Najeeb, S., Khurshid, Z., Verma, V., Rashid, H., & Glogauer, M. (2015). Biodegradable materials for bone repair and tissue engineering applications. Materials (Basel, Switzerland), 8(9), 5744–5794. https://doi.org/10.3390/ma8095273
  • Shen, X.-J., Huang, P.-L., Chen, J.-H., Wu, Y.-Y., Liu, Q.-Y., & Sun, R.-C. (2017). Comparison of acid-hydrolyzed and TEMPO-oxidized nanocellulose for reinforcing alginate fibers. BioResources, 12(4), 8180–8198. https://doi.org/10.15376/biores.12.4.8180-8198
  • Shin, Y., Yoo, D. I., & Jang, J. (2001). Molecular weight effect on antimicrobial activity of chitosan treated cotton fabrics [Article]. Journal of Applied Polymer Science, 80(13), 2495–2501. https://doi.org/10.1002/app.1357
  • Sixta, H., Michud, A., Hauru, L., Asaadi, S., Ma, Y., King, A. W., Kilpeläinen, I., & Hummel, M. (2015). Ioncell-F: A high-strength regenerated cellulose fibre [Article]. Nordic Pulp & Paper Research Journal, 30(1), 43–57. https://doi.org/10.3183/npprj-2015-30-01-p043-057
  • Skwierczyńska, M., Runowski, M., Kulpiński, P., & Lis, S. (2019). Modification of cellulose fibers with inorganic luminescent nanoparticles based on lanthanide (III) ions. Carbohydrate Polymers, 206, 742–748. https://doi.org/10.1016/j.carbpol.2018.11.058
  • Srinivasa, C. V., Arifulla, A., Goutham, N., Santhosh, T., Jaeethendra, H. J., Ravikumar, R. B., Anil, S. G., Santhosh Kumar, D. G., & Ashish, J. (2011). Static bending and impact behaviour of areca fibers composites. Materials & Design, 32(4), 2469–2475. https://doi.org/10.1016/j.matdes.2010.11.020
  • Stenton, M., Houghton, J. A., Kapsali, V., & Blackburn, R. S. (2021). The potential for regenerated protein fibres within a circular economy: Lessons from the past can inform sustainable innovation in the textiles industry [review]. Sustainability, 13(4), 2328. https://doi.org/10.3390/su13042328
  • Subash, M., & Muthiah, P. (2021). Eco-friendly degumming of natural fibers for textile applications: A comprehensive review. Cleaner Engineering and Technology, 5, 100304. https://doi.org/10.1016/j.clet.2021.100304
  • Sun, X. T., Wang, X., Sun, F. Q., Tian, M. W., Qu, L. J., Perry, P., Ovens, H., & Liu, X. Q. (2021). Textile waste fiber regeneration via a green chemistry approach: A molecular strategy for sustainable fashion. Advanced Materials 33(48), 1–9.
  • Sureshkumar, P. S., Thanikaivelan, P., Phebe, K., Krishnaraj, K., Jagadeeswaran, R., & Chandrasekaran, B. (2012). Investigations on structural, mechanical, and thermal properties of pineapple leaf fiber-based fabrics and cow softy leathers: An approach toward making amalgamated leather products. Journal of Natural Fibers, 9(1), 37–50. https://doi.org/10.1080/15440478.2012.652834
  • Thill, S., Schmidt, T., Wöll, D., & Gebhardt, R. (2021). A regenerated fiber from rennet-treated casein micelles [Article]. Colloid and Polymer Science, 299(5), 909–914. https://doi.org/10.1007/s00396-020-04802-5
  • Thulasisingh, A., Kumar, K., Yamunadevi, B., Poojitha, N., SuhailMadharHanif, S., & Kannaiyan, S. (2021). Biodegradable packaging materials [Review; Early Access]. Polymer Bulletin, 79, 4467–4496.
  • Tokoro, R., Vu, D. M., Okubo, K., Tanaka, T., Fujii, T., & Fujiura, T. (2008). How to improve mechanical properties of polylactic acid with bamboo fibers. Journal of Materials Science, 43(2), 775–787. https://doi.org/10.1007/s10853-007-1994-y
  • Tokura, S., Nishimura, S.-I., Sakairi, N., & Nishi, N. (1996). Biological activities of biodegradable polysaccharide. Macromolecular Symposia, 101(1), 389–396. https://doi.org/10.1002/masy.19961010144
  • Tsuji, H., Ikada, Y., Hyon, S.-H., Kimura, Y., & Kitao, T. (1994). Stereocomplex formation between enantiomeric poly (lactic acid). VIII. Complex fibers spun from mixed solution of poly (D‐lactic acid) and poly (L‐lactic acid). Journal of Applied Polymer Science, 51(2), 337–344. https://doi.org/10.1002/app.1994.070510216
  • Ulery, B. D., Nair, L. S., & Laurencin, C. T. (2011). Biomedical applications of biodegradable polymers. Journal of Polymer Science. Part B, Polymer Physics, 49(12), 832–864. https://doi.org/10.1002/polb.22259
  • Usmanov, A. K., Miroshnichenko, I. B., Sadykov, A. S., & Rgashev, K. (1994). Selection of the optimum parameters for spinning of modified acetate textile fibre. Fibre Chemistry, 26(2), 94–96. https://doi.org/10.1007/BF00551240
  • Vigneshwaran, S., Sundarakannan, R., John, K. M., Joel Johnson, R. D., Prasath, K. A., Ajith, S., Arumugaprabu, V., & Uthayakumar, M. (2020). Recent advancement in the natural fiber polymer composites: A comprehensive review. Journal of Cleaner Production, 277, 124109. https://doi.org/10.1016/j.jclepro.2020.124109
  • Wagner, M. M., & Heinzel, T. (2020). Human perceptions of recycled textiles and circular fashion: A systematic literature review [Review]. Sustainability, 12(24), 10599. https://doi.org/10.3390/su122410599
  • Wang, N., Jian, Y., Liu, S., Liu, Y., & Huang, K. (2012). Influence of acetated-based and bromo-based ionic liquids treatment on wool dyeing with acid blue 7 [article]. Journal of Applied Polymer Science, 123(6), 3283–3291. https://doi.org/10.1002/app.35017
  • Wang, S.-D., Wang, K., Ma, Q., & Qu, C.-X. (2020). Fabrication of the multifunctional durable silk fabric with synthesized graphene oxide nanosheets. Materials Today Communications, 23, 100893. https://doi.org/10.1016/j.mtcomm.2020.100893
  • Wiedemann, S. G., Biggs, L., Nebel, B., Bauch, K., Laitala, K., Klepp, I. G., Swan, P. G., & Watson, K. (2020). Environmental impacts associated with the production, use, and end-of-life of a woollen garment [Article]. The International Journal of Life Cycle Assessment, 25(8), 1486–1499. https://doi.org/10.1007/s11367-020-01766-0
  • Wightman-Stone, B. D. Textile industry is “far from sustainable” states WWF 2017. Retrieved February 02, 2022, from https://fashionunited.uk/news/fashion/textile-industry-is-far-from-sustainable-states-wwf/2017101726337
  • Xiao, G. H., Zhao, P., & Zhang, Y. (2019). A pivotal role of hormones in regulating cotton fiber development [Review]. Frontiers in Plant Science, 10, 87. https://doi.org/10.3389/fpls.2019.00087
  • Xiao, L., Huang, Y., Luo, Y., Yang, B., Liu, Y., Zhou, X., & Zhang, J. (2018). Organic cotton photocatalysis [Article]. ACS Sustainable Chemistry & Engineering, 6(11), 14759–14766. +. https://doi.org/10.1021/acssuschemeng.8b03308
  • Xu, Y., Guo, J., Liu, Y., Yang, Q., Zhang, X., & Guan, F. (2022). Acid-catalyzed in-situ cross-linking of polyol on sodium alginate to improve its strength and hydrophobic properties. Materials & Design, 214, 110424. https://doi.org/10.1016/j.matdes.2022.110424
  • Yi, W. (2011). Study on the blend spinning parameters of chitin fiber/cotton blend yarn. Journal of Zhejiang Sci-Tech University, 28(6), 850–854.
  • Yilmaz, D., Karaboyaci, M., Kiliç, H., Kitapçi, K., & Yelkovan, S. (2015). Comparison of selected properties of eco-friendly soybean and other fibres [article]. Fibres and Textiles in Eastern Europe, 23(3(111), 14–24. https://doi.org/10.5604/12303666.1151694
  • Yuan, J., Fan, X., Wang, Q., Wang, P., & Cui, L. (2008). Modification of wool fiber with protease 1. Effect of ionic liquid pretreatment. Journal of Biotechnology. 136, S499. https://doi.org/10.1016/j.jbiotec.2008.07.1170
  • Zhang, L., Guo, F., Zuo, D. Y., Liao, S. Q., Wang, Q., Liu, L., Ma, D. J., Liu, H., Yi, H., & Yi, C. H. (2022) Effect of ozone washing on the antibacterial property of hemp yarn [Article; Early Access]. Journal of the Textile Institute, 113(12), 2569–2574.
  • Zimniewska, M., & Kozlowski, R. (2004). Natural and man-made fibers and their role in creation of physiological state of human body [Article]. Molecular Crystals and Liquid Crystals, 418, 841–858.
  • Zimniewska, M., Pawlaczyk, M., Romanowska, B., Gryszczyńska, A., Kwiatkowska, E., & Przybylska, P. (2021). Bioactive hemp clothing modified with cannabidiol (CBD) Cannabis sativa L. Extract [Article]. Materials, 14(20), 6031. https://doi.org/10.3390/ma14206031

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.