379
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Graphene in wearable textile sensor devices for healthcare

, , , &

References

  • Akinwande, D., Petrone, N., & Hone, J. (2014). Two-dimensional flexible nanoelectronics. Nature Communications, 5(1), 5678. https://doi.org/10.1038/ncomms6678.
  • Aleeva, Y., & Pignataro, B. & (2014). Recent advances in upscalable wet methods and ink formulations for printed electronics. Journal of Materials Chemistry C, 2(32), 6436–6453. https://doi.org/10.1039/C4TC00618F
  • Amjadi, M., Kyung, K.-U., Park, I., & Sitti, M. (2016). Stretchable, skin-mountable, and wearable strain sensors and their potential applications: A review. Advanced Functional Materials, 26(11), 1678–1698. https://doi.org/10.1002/adfm.201504755
  • Arapov, K., Rubingh, E., Abbel, R., Laven, J., de With, G., & Friedrich, H. (2016). Conductive screen printing inks by gelation of graphene dispersions. Advanced Functional Materials, 26(4), 586–593. https://doi.org/10.1002/adfm.201504030
  • Arias, A. C., MacKenzie, J. D., McCulloch, I., Rivnay, J., & Salleo, A. (2010). Materials and applications for large area electronics: Solution-based approaches. Chemical Reviews, 110(1), 3–24. https://doi.org/10.1021/cr900150b
  • Bai, S., Sun, C., Wan, P., Wang, C., Luo, R., Li, Y., … Sun, X. (2015). Transparent conducting films of hierarchically nanostructured polyaniline networks on flexible substrates for high-performance gas sensors. Small (Weinheim an Der Bergstrasse, Germany), 11(3), 306–310. https://doi.org/10.1002/smll.201401865
  • Bai, S., Zhang, S., Zhou, W., Ma, D., Ma, Y., Joshi, P., & Hu, A. (2017). Laser-assisted reduction of highly conductive circuits based on copper nitrate for flexible printed sensors. Nano-Micro Letters, 9(4), 42. https://doi.org/10.1007/s40820-017-0139-3
  • Bao, Z., Feng, Y., Dodabalapur, A., Raju, V. R., & Lovinger, A. J. (1997). High-performance plastic transistors fabricated by printing techniques. Chemistry of Materials, 9(6), 1299–1301. https://doi.org/10.1021/cm9701163
  • Bhushan, P., Umasankar, Y., RoyChoudhury, S., Hirt, P. A., MacQuhaec, F. E., Borda, L. J., … Bhansali, S. (2019). Biosensor for monitoring uric acid in wound and its proximity: A potential wound diagnostic tool. Journal of the Electrochemical Society, 166(10), B830–B836. https://doi.org/10.1149/2.1441910jes
  • Boehm, H. P., Setton, R., & Stumpp, E. (1986). Nomenclature and terminology of graphite intercalation compounds. Carbon, 24(2), 241–245. https://doi.org/10.1016/0008-6223(86)90126-0
  • Bonderover, E., & Wagner, S. (2004). A woven inverter circuit for e-textile applications. IEEE Electron Device Letters, 25(5), 295–297. https://doi.org/10.1109/LED.2004.826537
  • Borini, S., White, R., Wei, D., Astley, M., Haque, S., Spigone, E., … Ryhänen, T. (2013). Ultrafast graphene oxide humidity sensors. ACS Nano, 7(12), 11166–11173. https://doi.org/10.1021/nn404889b
  • Calvert, P. (2001). Inkjet printing for materials and devices. Chemistry of Materials, 13(10), 3299–3305. https://doi.org/10.1021/cm0101632
  • Cao, X., Chen, H., Gu, X., Liu, B., Wang, W., Cao, Y., … Zhou, C. (2014). Screen printing as a scalable and low-cost approach for rigid and flexible thin-film transistors using separated carbon nanotubes. ACS Nano, 8(12), 12769–12776. https://doi.org/10.1021/nn505979j
  • Capasso, A., Del Rio Castillo, A. E., Sun, H., Ansaldo, A., Pellegrini, V., & Bonaccorso, F. (2015). Ink-jet printing of graphene for flexible electronics: An environmentally-friendly approach. Solid State Communications., 224, 53–63. https://doi.org/10.1016/j.ssc.2015.08.011
  • Cataldi, P., Bonaccorso, F., Esau del Rio Castillo, A., Pellegrini, V., Jiang, Z., Liu, L., … Bayer, I. S. (2016). Cellulosic graphene biocomposites for versatile high-performance flexible electronic applications. Advanced Electronic Materials, 2(11), 1600245. https://doi.org/10.1002/aelm.201600245
  • Chen, C. N., Chen, C. P., Dong, T.-Y., Chang, T. C., Chen, M. C., Chen, H. T., & Chen, I. G. (2012). Using nanoparticles as direct-injection printing ink to fabricate conductive silver features on a transparent flexible PET substrate at room temperature. Acta Materialia., 60(16), 5914–5924. https://doi.org/10.1016/j.actamat.2012.07.034
  • Cheng, I.-C., & Wagner, S. (2009). Overview of flexible electronics technology. In W. S. Wong & A. Salleo (Eds.), Flexible electronics. Electronic materials: Science & technology (Vol. 11, pp. 1–28). New York, USA: Springer. https://doi.org/10.1007/978-0-387-74363-9_1
  • Choi, S. Y., Mamak, M., Cordola, E., & Stadler, U. (2011). Large scale production of high aspect ratio graphite nanoplatelets with tunable oxygen functionality. Journal of Materials Chemistry, 21(13), 5142. https://doi.org/10.1039/c1jm00039j
  • Christian, M., Mazzaro, R., & Morandi, V. (2020). Graphene-based materials: Bioinspired design of graphene-based materials (Adv. Funct. Mater. 51/2020). Advanced Functional Materials, 30(51), 2070336. https://doi.org/10.1002/adfm.202070336
  • Chuang, M.-C., Windmiller, J. R., Santhosh, P., Ramírez, G. V., Galik, M., Chou, T.-Y., & Wang, J. (2010). Textile-based electrochemical sensing: Effect of fabric substrate and detection of nitroaromatic explosives. Electroanalysis, 22(21), 2511–2518. https://doi.org/10.1002/elan.201000434
  • Chun, S., Kim, D. W., Kim, J., & Pang, C. (2019). A transparent, glue-free, skin-attachable graphene pressure sensor with micropillars for skin-elasticity measurement. Nanotechnology, 30(33), 335501. https://doi.org/10.1088/1361-6528/ab1d99
  • Chung, D., & Gray, B. L. (2019). Development of screen-printed flexible multi-level microfluidic devices with integrated conductive nanocomposite polymer electrodes on textiles. Journal of the Electrochemical Society, 166(9), B3116–B3124. https://doi.org/10.1149/2.0191909jes
  • Ciesielski, A., Haar, S., El Gemayel, M., Yang, H., Clough, J., Melinte, G., … Samorì, P. (2014). Harnessing the liquid-phase exfoliation of graphene using aliphatic compounds: A supramolecular approach. Angewandte Chemie (International ed. in English), 53(39), 10355–10361. https://doi.org/10.1002/anie.201402696
  • Cruz, S. M., F., Rocha, L. A., & Viana, J. C. (2018). Printing technologies on flexible substrates for printed electronics. Flexible Electronics (Vol. 3, pp. 47–70). https://doi.org/10.5772/intechopen.76161
  • De Rossi, D. (2007). A logical step. Nature Materials, 6(5), 328–329. https://doi.org/10.1038/nmat1892
  • Deng, D., Jin, Y., Cheng, Y., Qi, T., & Xiao, F. (2013). Copper nanoparticles: Aqueous phase synthesis and conductive films fabrication at low sintering temperature. ACS Applied Materials & Interfaces, 5(9), 3839–3846. https://doi.org/10.1021/am400480k
  • Dhakate, S. R., Chauhan, N., Sharma, S., Tawale, J., Singh, S., Sahare, P. D., & Mathur, R. B. (2011). An approach to produce single and double layer graphene from re-exfoliation of expanded graphite. Carbon, 49(6), 1946–1954. https://doi.org/10.1016/j.carbon.2010.12.068
  • Di, C-A., Wei, D., Yu, G., Liu, Y., Guo, Y., & Zhu, D. (2008). Patterned graphene as source/drain electrodes for bottom-contact organic field-effect transistors. Advanced Materials, 20(17), 3289–3293. https://doi.org/10.1002/adma.200800150
  • Dimiev, A. M., & Tour, J. M. & (2014). Mechanism of graphene oxide formation. ACS Nano, 8(3), 3060–3068. https://doi.org/10.1021/nn500606a
  • Dong, X., Li, B., Wei, A., Cao, X., Chan-Park, M. B., Zhang, H., … Chen, P. (2011). One-step growth of graphene–carbon nanotube hybrid materials by chemical vapor deposition. Carbon, 49(9), 2944–2949. https://doi.org/10.1016/j.carbon.2011.03.009
  • Dong, Y., Li, X., Liu, S., Zhu, Q., Li, J.-G., & Sun, X. (2015). Facile synthesis of high silver content MOD ink by using silver oxalate precursor for inkjet printing applications. Thin Solid Films., 589, 381–387. https://doi.org/10.1016/j.tsf.2015.06.001
  • Duan, X., Indrawirawan, S., Sun, H., & Wang, S. (2015). Effects of nitrogen-, boron-, and phosphorus-doping or codoping on metal-free graphene catalysis. Catalysis Today, 249, 184–191. https://doi.org/10.1016/j.cattod.2014.10.005
  • Englert, J. M., Dotzer, C., Yang, G., Schmid, M., Papp, C., Gottfried, J. M., … Hirsch, A. (2011). Covalent bulk functionalization of graphene. Nature Chemistry, 3(4), 279–286. https://doi.org/10.1038/nchem.1010
  • Eom, J., Jaisutti, R., Lee, H., Lee, W., Heo, J.-S., Lee, J.-Y., … Kim, Y.-H. (2017). Highly sensitive textile strain sensors and wireless user-interface devices using all-polymeric conducting fibers. ACS Applied Materials & Interfaces, 9(11), 10190–10197. https://doi.org/10.1021/acsami.7b01771
  • Esteve-Adell, I., Porcel-Valenzuela, M., Zubizarreta, L., Gil-Agustí, M., García-Pellicer, M., & Quijano-Lopez, A. (2022). Influence of the specific surface area of graphene nanoplatelets on the capacity of lithium-ion batteries. Frontiers in Chemistry, 10, 807980. https://doi.org/10.3389/fchem.2022.807980
  • Fadeel, B., Bussy, C., Merino, S., Vazquez, E., Flahaut, E., Mouchet, F., … Bianco, A. (2018). Safety assessment of graphene-based materials: Focus on human health and the environment. ACS Nano, 12(11), 10582–10620. https://doi.org/10.1021/acsnano.8b04758
  • Feng, H., Cheng, R., Zhao, X., Duan, X., & Li, J. (2013). A low-temperature method to produce highly reduced graphene oxide. Nature Communications, 4(1), 1539. https://doi.org/10.1038/ncomms2555.
  • Forrest, S. R. (2004). The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature, 428(6986), 911–918. https://doi.org/10.1038/nature02498
  • Gaikwad, A. M., Whiting, G. L., Steingart, D. A., & Arias, A. C. (2011). Highly flexible, printed alkaline batteries based on mesh-embedded electrodes. Advanced Materials (Deerfield Beach, Fla.), 23(29), 3251–3255. https://doi.org/10.1002/adma.201100894
  • Gao, W., Ota, H., Kiriya, D., Takei, K., & Javey, A. (2019). Flexible electronics toward wearable sensing. Accounts of Chemical Research, 52(3), 523–533. https://doi.org/10.1021/acs.accounts.8b00500
  • Gao, Y., Shi, W., Wang, W., Leng, Y., & Zhao, Y. (2014). Inkjet printing patterns of highly conductive pristine graphene on flexible substrates. Industrial & Engineering Chemistry Research, 53(43), 16777–16784. https://doi.org/10.1021/ie502675z
  • Ge, X., Li, H., Wu, L., Li, P., Mu, X., & Jiang, Y. (2017). Improved mechanical and barrier properties of starch film with reduced graphene oxide modified by SDBS. Journal of Applied Polymer Science, 134(22), 44910(1–8). https://doi.org/10.1002/app.44910
  • Ghahremani Honarvar, M., & Latifi, M. (2017). Overview of wearable electronics and smart textiles. Journal of the Textile Institute., 108(4), 631–652. https://doi.org/10.1080/00405000.2016.1177870
  • Giardi, R., Porro, S., Chiolerio, A., Celasco, E., & Sangermano, M. (2013). Inkjet printed acrylic formulations based on UV-reduced graphene oxide nanocomposites. Journal of Materials Science, 48(3), 1249–1255. https://doi.org/10.1007/s10853-012-6866-4
  • Gimpel, S., Mohring, U., Muller, H., Neudeck, A., & Scheibner, W. (2004). Textile-based electronic substrate technology. Journal of Industrial Textiles., 33(3), 179–189. https://doi.org/10.1177/1528083704039828
  • Golparvar, A. J., & Yapici, M. K. (2019). Graphene smart textile-based wearable eye movement sensor for electro-ocular control and interaction with objects. Journal of the Electrochemical Society, 166(9), B3184–B3193. https://doi.org/10.1149/2.0241907jes
  • Guo, Y., Otley, M. T., Li, M., Zhang, X., Sinha, S. K., Treich, G. M., & Sotzing, G. A. (2016). PEDOT:PSS “wires” printed on textile for wearable electronics. ACS Applied Materials & Interfaces, 8(40), 26998–27005. https://doi.org/10.1021/acsami.6b08036
  • Haar, S., Ciesielski, A., Clough, J., Yang, H., Mazzaro, R., Richard, F., … Samorì, P. (2015). A supramolecular strategy to leverage the liquid-phase exfoliation of graphene in the presence of surfactants: Unraveling the role of the length of fatty acids. Small (Weinheim an Der Bergstrasse, Germany), 11(14), 1691–1702. https://doi.org/10.1002/smll.201402745
  • Harris, A. R., Molino, P. J., Kapsa, R. M. I., Clark, G. M., Paolini, A. G., & Wallace, G. G. (2015). Correlation of the impedance and effective electrode area of doped PEDOT modified electrodes for brain–machine interfaces. The Analyst, 140(9), 3164–3174. https://doi.org/10.1039/C4AN02362E
  • Hatamie, A., Angizi, S., Kumar, S., Pandey, C. M., Simchi, A., Willander, M., & Malhotra, B. D. (2020a). Review—Textile based chemical and physical sensors for healthcare monitoring. Journal of the Electrochemical Society, 167(3), 037546. https://doi.org/10.1149/1945-7111/ab6827
  • Hatamie, A., Angizi, S., Kumar, S., Pandey, C. M., Simchi, A., Willander, M., & Malhotra, B. D. (2020b). Textile based chemical and physical sensors for healthcare monitoring. Journal of the Electrochemical Society, 167(3), 037546. https://doi.org/10.1149/1945-7111/ab6827
  • He, M., Zhang, R., Zhang, K., Liu, Y., Su, Y., & Jiang, Z. (2019). Reduced graphene oxide aerogel membranes fabricated through hydrogen bond mediation for highly efficient oil/water separation. Journal of Materials Chemistry A, 7(18), 11468–11477. https://doi.org/10.1039/C9TA01700C
  • He, P., Cao, J., Ding, H., Liu, C., Neilson, J., Li, Z., … Derby, B. (2019). Screen-printing of a highly conductive graphene ink for flexible printed electronics. ACS Applied Materials & Interfaces, 11(35), 32225–32234. https://doi.org/10.1021/acsami.9b04589
  • He, Q., Sudibya, H. G., Yin, Z., Wu, S., Li, H., Boey, F., … Zhang, H. (2010). Centimeter-long and large-scale micropatterns of reduced graphene oxide films: Fabrication and sensing applications. ACS Nano, 4(6), 3201–3208. https://doi.org/10.1021/nn100780v
  • He, Q., Wu, S., Gao, S., Cao, X., Yin, Z., Li, H., … Zhang, H. (2011). Transparent, flexible, all-reduced graphene oxide thin film transistors. ACS Nano, 5(6), 5038–5044. https://doi.org/10.1021/nn201118c
  • Heo, J. S., Hossain, M. F., & Kim, I. (2020). Challenges in design and fabrication of flexible/stretchable carbon- and textile-based wearable sensors for health monitoring: A critical review. Sensors, 20(14), 3927. https://doi.org/10.3390/s20143927
  • Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F. M., Sun, Z., De, S., … Coleman, J. N. (2008). High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology, 3(9), 563–568. https://doi.org/10.1038/nnano.2008.215
  • Hu, L., Pasta, M., La Mantia, F., Cui, L., Jeong, S., Deshazer, H. D., … Cui, Y. (2010). Stretchable, porous, and conductive energy textiles. Nano Letters, 10(2), 708–714. https://doi.org/10.1021/nl903949m
  • Hu, Y., Zhuo, H., Luo, Q., Wu, Y., Wen, R., Chen, Z., … Sun, R. (2019). Biomass polymer-assisted fabrication of aerogels from MXenes with ultrahigh compression elasticity and pressure sensitivity. Journal of Materials Chemistry A, 7(17), 10273–10281. https://doi.org/10.1039/C9TA01448A
  • Hua, Q., Sun, J., Liu, H., Bao, R., Yu, R., Zhai, J., … Wang, Z. L. (2018). Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nature Communications, 9(1), 244. https://doi.org/10.1038/s41467-017-02685-9.
  • Huang, C.-T., Tang, C.-F., Lee, M.-C., & Chang, S.-H. (2008). Parametric design of yarn-based piezoresistive sensors for smart textiles. Sensors and Actuators A: Physical, 148(1), 10–15. https://doi.org/10.1016/j.sna.2008.06.029
  • Huang, H., Su, S., Wu, N., Wan, H., Wan, S., Bi, H., & Sun, L. (2019). Graphene-based sensors for human health monitoring. Frontiers in Chemistry, 7(399), 399. https://doi.org/10.3389/fchem.2019.00399.
  • Huang, L., Wang, Z., Zhang, J., Pu, J., Lin, Y., Xu, S., … Shi, W. (2014). Fully printed, rapid-response sensors based on chemically modified graphene for detecting NO2 at room temperature. ACS Applied Materials & Interfaces, 6(10), 7426–7433. https://doi.org/10.1021/am500843p
  • Huang, Q., Shen, W., Xu, Q., Tan, R., & Song, W. (2014). Properties of polyacrylic acid-coated silver nanoparticle ink for inkjet printing conductive tracks on paper with high conductivity. Materials Chemistry and Physics, 147(3), 550–556. https://doi.org/10.1016/j.matchemphys.2014.05.030
  • Hummers, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the American Chemical Society, 80(6), 1339–1339. https://doi.org/10.1021/ja01539a017
  • Hyun, W. J., Secor, E. B., Hersam, M. C., Frisbie, C. D., & Francis, L. F. (2015). High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics. Advanced Materials (Deerfield Beach, Fla.), 27(1), 109–115. https://doi.org/10.1002/adma.201404133
  • Jabari, E., & Toyserkani, E. (2015). Micro-scale aerosol-jet printing of graphene interconnects. Carbon, 91, 321–329. https://doi.org/10.1016/j.carbon.2015.04.094
  • Jabari, E., & Toyserkani, E. & (2016). Aerosol-Jet printing of highly flexible and conductive graphene/silver patterns. Materials Letters, 174, 40–43. https://doi.org/10.1016/j.matlet.2016.03.082
  • Jang, H., Park, Y. J., Chen, X., Das, T., Kim, M.-S., & Ahn, J.-H. (2016). Graphene-based flexible and stretchable electronics. Advanced Materials (Deerfield Beach, Fla.), 28(22), 4184–4202. https://doi.org/10.1002/adma.201504245
  • Jang, J.-H., Rangappa, D., Kwon, Y.-U., & Honma, I. (2011). Direct preparation of 1-PSA modified graphenenanosheets by supercritical fluidic exfoliation and its electrochemical properties. Journal of Materials Chemistry, 21(10), 3462–3466. https://doi.org/10.1039/C0JM02472D
  • Jeong, S., Lee, S. H., Jo, Y., Lee, S. S., Seo, Y.-H., Ahn, B. W., … Choi, Y. (2013). Air-stable, surface-oxide free Cu nanoparticles for highly conductive Cu ink and their application to printed graphene transistors. Journal of Materials Chemistry C, 1(15), 2704. https://doi.org/10.1039/c3tc00904a
  • Jin, Z., McNicholas, T. P., Shih, C.-J., Wang, Q. H., Paulus, G. L., Hilmer, A. J., … Strano, M. S. (2011). Click chemistry on solution-dispersed graphene and monolayer CVD graphene. Chemistry of Materials, 23(14), 3362–3370. https://doi.org/10.1021/cm201131v
  • Jung, M., Kim, J., Noh, J., Lim, N., Lim, C., Lee, G., … Cho, G. (2010). All-printed and roll-to-roll-printable 13.56-MHz-operated 1-bit RF tag on plastic foils. IEEE Transactions on Electron Devices, 57(3), 571–580. https://doi.org/10.1109/TED.2009.2039541
  • Kahn, B. E. (2007). The M3D aerosol jet system, an alternative to inkjet printing for printed electronics. Org Print Electron, 1(1), 20–23.
  • Kahn, N., Lavie, O., Paz, M., Segev, Y., & Haick, H. (2015). Dynamic nanoparticle-based flexible sensors: Diagnosis of ovarian carcinoma from exhaled breath. Nano Letters, 15(10), 7023–7028. https://doi.org/10.1021/acs.nanolett.5b03052
  • Kang, S.-K., Murphy, R. K. J., Hwang, S.-W., Lee, S. M., Harburg, D. V., Krueger, N. A., … Rogers, J. A. (2016). Bioresorbable silicon electronic sensors for the brain. Nature, 530(7588), 71–76. https://doi.org/10.1038/nature16492
  • Kang, T.-H., Chang, H., Choi, D., Kim, S., Moon, J., Lim, J. A., … Yi, H. (2019). Hydrogel-templated transfer-printing of conductive nanonetworks for wearable sensors on topographic flexible substrates. Nano Letters, 19(6), 3684–3691. https://doi.org/10.1021/acs.nanolett.9b00764
  • Karim, N., Afroj, S., Tan, S., He, P., Fernando, A., Carr, C., & Novoselov, K. S. (2017). Scalable production of graphene-based wearable E-textiles. ACS Nano, 11(12), 12266–12275. https://doi.org/10.1021/acsnano.7b05921
  • Karvonen, H., Pomalaza-Ráez, C., Mikhaylov, K., Hämäläinen, M., & Iinatti, J. (2019). Experimental performance evaluation of BLE 4 versus BLE 5 in indoors and outdoors scenarios. In G. Fortino & Z. Wang (Eds.), Advances in body area networks I. Internet of things (pp. 235–251). Cham: Springer. https://doi.org/10.1007/978-3-030-02819-0_18
  • Kassal, P., Kim, J., Kumar, R., de Araujo, W. R., Steinberg, I. M., Steinberg, M. D., & Wang, J. (2015). Smart bandage with wireless connectivity for uric acid biosensing as an indicator of wound status. Electrochemistry Communications., 56, 6–10. https://doi.org/10.1016/j.elecom.2015.03.018
  • Khan, S., Lorenzelli, L., & Dahiya, R. S. (2015). Technologies for printing sensors and electronics over large flexible substrates: A review. IEEE Sensors Journal, 15(6), 3164–3185. https://doi.org/10.1109/JSEN.2014.2375203
  • Khan, U., O'Neill, A., Lotya, M., De, S., & Coleman, J. N. (2010). High-concentration solvent exfoliation of graphene. Small (Weinheim an Der Bergstrasse, Germany), 6(7), 864–871. https://doi.org/10.1002/smll.200902066
  • Khan, Y., Ostfeld, A. E., Lochner, C. M., Pierre, A., & Arias, A. C. (2016). Monitoring of vital signs with flexible and wearable medical devices. Advanced Materials (Deerfield Beach, Fla.), 28(22), 4373–4395. https://doi.org/10.1002/adma.201504366
  • Kholmanov, I. N., Magnuson, C. W., Aliev, A. E., L., H., Zhang, B., Suk, J. W., Zhang, L. L., … Ruoff, R. S. (2012). Improved electrical conductivity of graphene films integrated with metal nanowires. Nano Letters, 12(11), 5679–5683. https://doi.org/10.1021/nl302870x
  • Kim, B. J., Lee, S.-K., Kang, M. S., Ahn, J.-H., & Cho, J. H. (2012). Coplanar-gate transparent graphene transistors and inverters on plastic. ACS Nano, 6(10), 8646–8651.
  • Kim, D.-H., Lu, N., Ma, R., Kim, Y.-S., Kim, R.-H., Wang, S., … Rogers, J. A. (2011). Epidermal electronics. Science (New York, N.Y.), 333(6044), 838–843. https://doi.org/10.1126/science.1206157
  • Kim, K. N., Chun, J., Kim, J. W., Lee, K. Y., Park, J.-U., Kim, S.-W., … Baik, J. M. (2015). Highly stretchable 2D fabrics for wearable triboelectric nanogenerator under harsh environments. ACS Nano, 9(6), 6394–6400. https://doi.org/10.1021/acsnano.5b02010
  • Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., … Hong, B. H. (2009). Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457(7230), 706–710. https://doi.org/10.1038/nature07719
  • Kong, D., Le, L. T., Li, Y., Zunino, J. L., & Lee, W. (2012). Temperature-dependent electrical properties of graphene inkjet-printed on flexible materials. Langmuir: The ACS Journal of Surfaces and Colloids, 28(37), 13467–13472. https://doi.org/10.1021/la301775d
  • Kopola, P., Aernouts, T., Guillerez, S., Jin, H., Tuomikoski, M., Maaninen, A., & Hast, J. (2010). High efficient plastic solar cells fabricated with a high-throughput gravure printing method. Solar Energy Materials and Solar Cells., 94(10), 1673–1680. https://doi.org/10.1016/j.solmat.2010.05.027
  • Kopola, P., Tuomikoski, M., Suhonen, R., & Maaninen, A. (2009). Gravure printed organic light emitting diodes for lighting applications. Thin Solid Films., 517(19), 5757–5762. https://doi.org/10.1016/j.tsf.2009.03.209
  • Krebs, F. C. (2009). Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Solar Energy Materials and Solar Cells., 93(4), 394–412. https://doi.org/10.1016/j.solmat.2008.10.004
  • Lee, C.-L., Chen, C.-H., & Chen, C.-W. (2013). Graphene nanosheets as ink particles for inkjet printing on flexible board. Chemical Engineering Journal and the Biochemical Engineering Journal., 230, 296–302. https://doi.org/10.1016/j.cej.2013.06.093
  • Lee, H., Choi, T. K., Lee, Y. B., Cho, H. R., Ghaffari, R., Wang, L., … Kim, D.-H. (2016). A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nature Nanotechnology, 11(6), 566–572. https://doi.org/10.1038/nnano.2016.38
  • Lee, S.-K., Kim, B. J., Jang, H., Yoon, S. C., Lee, C., Hong, B. H., … Ahn, J.-H. (2011). Stretchable graphene transistors with printed dielectrics and gate electrodes. Nano Letters, 11(11), 4642–4646. https://doi.org/10.1021/nl202134z
  • Lee, Y. H., Kweon, O. Y., Kim, H., Yoo, J. H., Han, S. G., & Oh, J. H. (2018). Recent advances in organic sensors for health self-monitoring systems. Journal of Materials Chemistry C, 6(32), 8569–8612. https://doi.org/10.1039/C8TC02230E
  • Li, B., Cao, X., Ong, H. G., Cheah, J. W., Zhou, X., Yin, Z., … Zhang, H. (2010). All-carbon electronic devices fabricated by directly grown single-walled carbon nanotubes on reduced graphene oxide electrodes. Advanced Materials (Deerfield Beach, Fla.), 22(28), 3058–3061. https://doi.org/10.1002/adma.201000736
  • Li, D., & Kaner, R. B. (2008). Graphene-based materials. Science (New York, N.Y.), 320(5880), 1170–1171. https://doi.org/10.1126/science.1158180
  • Li, D., Müller, M. B., Gilje, S., Kaner, R. B., & Wallace, G. G. (2008). Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology, 3(2), 101–105. https://doi.org/10.1038/nnano.2007.451.
  • Li, J., Sollami Delekta, S., Zhang, P., Yang, S., Lohe, M. R., Zhuang, X., … Östling, M. (2017). Scalable fabrication and integration of graphene microsupercapacitors through full inkjet printing. ACS Nano, 11(8), 8249–8256. https://doi.org/10.1021/acsnano.7b03354
  • Li, J., Ye, F., Vaziri, S., Muhammed, M., Lemme, M. C., & Östling, M. (2013). Efficient inkjet printing of graphene. Advanced Materials (Deerfield Beach, Fla.), 25(29), 3985–3992. https://doi.org/10.1002/adma.201300361
  • Li, L., Gao, M., Guo, Y., Sun, J., Li, Y., Li, F., … Li, Y. (2017). Transparent Ag@Au–graphene patterns with conductive stability via inkjet printing. Journal of Materials Chemistry C, 5(11), 2800–2806. https://doi.org/10.1039/C6TC05227D
  • Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., … Ruoff, R. S. (2009). Large-area synthesis of high-quality and uniform graphene films on copper foils. Science (New York, N.Y.), 324(5932), 1312–1314. https://doi.org/10.1126/science.1171245
  • Li, X., Zhang, G., Bai, X., Sun, X., Wang, X., Wang, E., & Dai, H. (2008). Highly conducting graphene sheets and Langmuir–Blodgett films. Nature Nanotechnology, 3(9), 538–542. https://doi.org/10.1038/nnano.2008.210
  • Liu, H., Li, M., Ouyang, C., Lu, T. J., Li, F., & Xu, F. (2018). Biofriendly, stretchable, and reusable hydrogel electronics as wearable force sensors. Small, 14(36), 1801711. https://doi.org/10.1002/smll.201801711
  • Liu, J., Tang, J., & Gooding, J. J. (2012). Strategies for chemical modification of graphene and applications of chemically modified graphene. Journal of Materials Chemistry, 22(25), 12435. https://doi.org/10.1039/c2jm31218b
  • Liu, J., Wang, Y., Wen, H., Bao, Q., Shen, L., & Ding, L. (2020). Organic photodetectors: Materials, structures, and challenges. Solar RRL, 4(7), 2000139. https://doi.org/10.1002/solr.202000139
  • Liu, J., Yin, Z., Cao, X., Zhao, F., Lin, A., Xie, L., … Huang, W. (2010). Bulk heterojunction polymer memory devices with reduced graphene oxide as electrodes. ACS Nano, 4(7), 3987–3992. https://doi.org/10.1021/nn100877s
  • Liu, M., Pu, X., Jiang, C., Liu, T., Huang, X., Chen, L., … Wang, Z. L. (2017). Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Advanced Materials, 29(41), 1703700. https://doi.org/10.1002/adma.201703700
  • Liu, Y., Tao, L.-Q., Wang, D.-Y., Zhang, T.-Y., Yang, Y., & Ren, T.-L. (2017). Flexible, highly sensitive pressure sensor with a wide range based on graphene-silk network structure. Applied Physics Letters, 110(12), 123508. https://doi.org/10.1063/1.4978374
  • Lonkar, S. P., Deshmukh, Y. S., & Abdala, A. A. (2015). Recent advances in chemical modifications of graphene. Nano Research, 8(4), 1039–1074. https://doi.org/10.1007/s12274-014-0622-9
  • Lotya, M., Hernandez, Y., King, P. J., Smith, R. J., Nicolosi, V., Karlsson, L. S., … Coleman, J. N. (2009). Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. Journal of the American Chemical Society, 131(10), 3611–3620. https://doi.org/10.1021/ja807449u
  • Lou, Z., Wang, L., Jiang, K., Wei, Z., & Shen, G. (2020). Reviews of wearable healthcare systems: Materials, devices and system integration. Materials Science and Engineering: R: Reports, 140, 100523. https://doi.org/10.1016/j.mser.2019.100523
  • Low, C. T. J., Walsh, F. C., Chakrabarti, M. H., Hashim, M. A., & Hussain, M. A. (2013). Electrochemical approaches to the production of graphene flakes and their potential applications. Carbon, 54, 1–21. https://doi.org/10.1016/j.carbon.2012.11.030
  • Ma, Y., Liu, N., Li, L., Hu, X., Zou, Z., Wang, J., … Gao, Y. (2017). A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nature Communications, 8(1), 1207. https://doi.org/10.1038/s41467-017-01136-9.
  • Macadam, N., Ng, L. W., Hu, G., Shi, H. H., Wang, W., Zhu, X., … Howe, R. C. (2022). 100 m min− 1 industrial-scale flexographic printing of graphene-incorporated conductive ink. Advanced Engineering Materials, 24(5), 2101217. https://doi.org/10.1002/adem.202101217
  • Maccioni, M., Orgiu, E., Cosseddu, P., Locci, S., & Bonfiglio, A. (2006). Towards the textile transistor: Assembly and characterization of an organic field effect transistor with a cylindrical geometry. Applied Physics Letters, 89(14), 143515. https://doi.org/10.1063/1.2357030
  • Mahajan, A., Frisbie, C. D., & Francis, L. F. (2013). Optimization of aerosol jet printing for high-resolution, high-aspect ratio silver lines. ACS Applied Materials & Interfaces, 5(11), 4856–4864. https://doi.org/10.1021/am400606y
  • Maiti, S., Das, D., & Sen, K. (2017). Flexible non-metallic electro-conductive textiles. Textile Progress., 49(1), 1–52. https://doi.org/10.1080/00405167.2017.1278875
  • Majee, S., Song, M., Zhang, S.-L., & Zhang, Z.-B. (2016). Scalable inkjet printing of shear-exfoliated graphene transparent conductive films. Carbon, 102, 51–57. https://doi.org/10.1016/j.carbon.2016.02.013
  • Manjakkal, L., Dervin, S., & Dahiya, R. (2020). Flexible potentiometric pH sensors for wearable systems. RSC Advances, 10(15), 8594–8617. https://doi.org/10.1039/D0RA00016G
  • Mannoor, M. S., Tao, H., Clayton, J. D., Sengupta, A., Kaplan, D. L., Naik, R. R., … McAlpine, M. C. (2012). Graphene-based wireless bacteria detection on tooth enamel. Nature Communications, 3(1), 763. https://doi.org/10.1038/ncomms1767.
  • Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., … Tour, J. M. (2010). Improved synthesis of graphene oxide. ACS Nano, 4(8), 4806–4814. https://doi.org/10.1021/nn1006368
  • Mette, A., Richter, P. L., Hörteis, M., & Glunz, S. W. (2007). Metal aerosol jet printing for solar cell metallization. Progress in Photovoltaics: Research and Applications, 15(7), 621–627. https://doi.org/10.1002/pip.759
  • Moon, I. K., Lee, J., Ruoff, R. S., & Lee, H. (2010). Reduced graphene oxide by chemical graphitization. Nature Communications, 1(1), 73. https://doi.org/10.1038/ncomms1067.
  • Moon, S., Park, H. K., Song, J. H., Cho, S., Kim, J. C., Kim, J., … Jeong, U. (2018). Metal deposition on a self-generated microfibril network to fabricate stretchable tactile sensors providing analog position information. Advanced Materials, 30(32), 1801408. https://doi.org/10.1002/adma.201801408
  • Moonen, P. F., Yakimets, I., & Huskens, J. (2012). Fabrication of transistors on flexible substrates: From mass-printing to high-resolution alternative lithography strategies. Advanced Materials (Deerfield Beach, Fla.), 24(41), 5526–5541. https://doi.org/10.1002/adma.201202949
  • Morris, H., & Murray, R. (2020). Medical textiles. Textile Progress., 52(1-2), 1–127. https://doi.org/10.1080/00405167.2020.1824468
  • Mukhopadhyay, S. C. & (2015). Wearable sensors for human activity monitoring: A review. IEEE Sensors Journal, 15(3), 1321–1330. https://doi.org/10.1109/JSEN.2014.2370945
  • Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., … Geim, A. K. (2008). Fine structure constant defines visual transparency of graphene. Science (New York, N.Y.), 320(5881), 1308–1308. https://doi.org/10.1126/science.1156965
  • Namvari, M., Biswas, C. S., Wang, Q., Liang, W., & Stadler, F. J. (2017). Crosslinking hydroxylated reduced graphene oxide with RAFT-CTA: A nano-initiator for preparation of well-defined amino acid-based polymer nanohybrids. Journal of Colloid and Interface Science, 504, 731–740. https://doi.org/10.1016/j.jcis.2017.06.007
  • Nguyen, H. A. D., Lee, J., Kim, C. H., Shin, K.-H., & Lee, D. (2013). An approach for controlling printed line-width in high resolution roll-to-roll gravure printing. Journal of Micromechanics and Microengineering, 23(9), 095010. 095010. https://doi.org/10.1088/0960-1317/23/9/095010
  • Nightingale, A. M., Leong, C. L., Burnish, R. A., Hassan, S-U., Zhang, Y., Clough, G. F., … Niu, X. (2019). Monitoring biomolecule concentrations in tissue using a wearable droplet microfluidic-based sensor. Nature Communications, 10(1), 2741. https://doi.org/10.1038/s41467-019-10401-y.
  • Novoselov, K. S., Fal-Ko, V. I., Colombo, L., Gellert, P. R., Schwab, M. G., & Kim, K. (2012). A roadmap for graphene. Nature, 490(7419), 192–200. https://doi.org/10.1038/nature11458
  • Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., … Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666–669. https://doi.org/10.1126/science.1102896
  • Ogrodnik, P. J. (2021). Ensuring regulatory compliance. (1st Ed). In Morris, H., & Murray, R (Eds). Boca Raton, USA: CRC Press. https://doi.org/10.1201/9781003170570
  • Oh, J. Y., Rondeau-Gagné, S., Chiu, Y.-C., Chortos, A., Lissel, F., Wang, G.-J. N., … Bao, Z. (2016). Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature, 539(7629), 411–415. https://doi.org/10.1038/nature20102
  • OuYang, F., Huang, B., Li, Z., Xiao, J., Wang, H., & Xu, H. (2008). Chemical functionalization of graphene nanoribbons by carboxyl groups on stone-wales defects. The Journal of Physical Chemistry C, 112(31), 12003–12007. https://doi.org/10.1021/jp710547x
  • Pandhi, T., Cornwell, C., Fujimoto, K., Barnes, P., Cox, J., Xiong, H., … Estrada, D. (2020). Fully inkjet-printed multilayered graphene-based flexible electrodes for repeatable electrochemical response. RSC Advances, 10(63), 38205–38219. https://doi.org/10.1039/D0RA04786D.
  • Pang, Y., Jian, J., Tu, T., Yang, Z., Ling, J., Li, Y., … Ren, T.-L. (2018). Wearable humidity sensor based on porous graphene network for respiration monitoring. Biosensors & Bioelectronics, 116, 123–129. https://doi.org/10.1016/j.bios.2018.05.038
  • Pang, Y., Zhang, K., Yang, Z., Jiang, S., Ju, Z., L., Y., Wang, X., … Ren, T.-L. (2018). Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity. ACS Nano, 12(3), 2346–2354. https://doi.org/10.1021/acsnano.7b07613
  • Paradiso, R., Loriga, G., & Taccini, N. (2005). A wearable health care system based on knitted integrated sensors. IEEE Transactions on Information Technology in Biomedicine: A Publication of the IEEE Engineering in Medicine and Biology Society, 9(3), 337–344. https://doi.org/10.1109/TITB.2005.854512
  • Park, J. H., Lee, H. E., Jeong, C. K., Kim, D. H., Hong, S. K., Park, K.-I., & Lee, K. J. (2019). Self-powered flexible electronics beyond thermal limits. Nano Energy., 56, 531–546. https://doi.org/10.1016/j.nanoen.2018.11.077
  • Park, J. J., Hyun, W. J., Mun, S. C., Park, Y. T., & Park, O. O. (2015). Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring. ACS Applied Materials & Interfaces, 7(11), 6317–6324. https://doi.org/10.1021/acsami.5b00695
  • Park, S. J., & Park, C. H. (2019). Suit-type wearable robot powered by shape-memory-alloy-based fabric muscle. Scientific Reports, 9(1), 9157. https://doi.org/10.1038/s41598-019-45722-x.
  • Parvez, K., Yang, S., Feng, X., & Müllen, K. (2015). Exfoliation of graphene via wet chemical routes. Synthetic Metals., 210(A), 123–132. https://doi.org/10.1016/j.synthmet.2015.07.014
  • Pei, S., & Cheng, H.-M. (2012). The reduction of graphene oxide. Carbon, 50(9), 3210–3228. https://doi.org/10.1016/j.carbon.2011.11.010
  • Pei, S., Zhao, J., Du, J., Ren, W., & Cheng, H.-M. (2010). Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon, 48(15), 4466–4474. https://doi.org/10.1016/j.carbon.2010.08.006
  • Pelin, M., Sosa, S., Prato, M., & Tubaro, A. (2018). Occupational exposure to graphene based nanomaterials: Risk assessment. Nanoscale, 10(34), 15894–15903. https://doi.org/10.1039/C8NR04950E
  • Perinka, N., Kim, C. H., Kaplanova, M., & Bonnassieux, Y. (2013). Preparation and characterization of thin conductive polymer films on the base of PEDOT: PSS by Ink-Jet Printing. Physics Procedia, 44, 120–129. https://doi.org/10.1016/j.phpro.2013.04.016
  • Podolska, A., Tham, S., Hart, R. D., Seeber, R. M., Kocan, M., Kocan, M., … Nener, B. D. (2012). Biocompatibility of semiconducting AlGaN/GaN material with living cells. Sensors and Actuators B: Chemical, 169, 401–406. https://doi.org/10.1016/j.snb.2012.04.015
  • Poland, C. A., Duffin, R., Kinloch, I., Maynard, A., Wallace, W. A. H., Seaton, A., … Donaldson, K. (2008). Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nature Nanotechnology, 3(7), 423–428. https://doi.org/10.1038/nnano.2008.111
  • Ponraj, G., Kirthika, S. K., Lim, C. M., & Ren, H. (2018). Soft tactile sensors with inkjet-printing conductivity and hydrogel biocompatibility for retractors in cadaveric surgical trials. IEEE Sensors Journal, 18(23), 9840–9847. https://doi.org/10.1109/JSEN.2018.2871242
  • Pu, N.-W., Wang, C.-A., Sung, Y., Liu, Y.-M., & Ger, M.-D. (2009). Production of few-layer graphene by supercritical CO2 exfoliation of graphite. Materials Letters., 63(23), 1987–1989. https://doi.org/10.1016/j.matlet.2009.06.031
  • Qi, X., Pu, K.-Y., Li, H., Zhou, X., Wu, S., Fan, Q.-L., … Zhang, H. (2010). Amphiphilic graphene composites. Angewandte Chemie (International ed. in English), 49(49), 9426–9429. https://doi.org/10.1002/anie.201004497
  • Qi, X., Pu, K.-Y., Zhou, X., Li, H., Liu, B., Boey, F., … Zhang, H. (2010). Conjugated-polyelectrolyte-functionalized reduced graphene oxide with excellent solubility and stability in polar solvents. Small (Weinheim an Der Bergstrasse, Germany), 6(5), 663–669. https://doi.org/10.1002/smll.200902221
  • Qiao, Y., Li, X., Hirtz, T., Deng, G., Wei, Y., Li, M., … Ren, T. L. (2019). Graphene-based wearable sensors. Nanoscale, 11(41), 18923–18945. https://doi.org/10.1039/C9NR05532K
  • Quintana, M., Grzelczak, M., Spyrou, K., Kooi, B., Bals, S., Tendeloo, G. V., … Prato, M. (2012). Production of large graphene sheets by exfoliation of graphite under high power ultrasound in the presence of tiopronin. Chemical Communications (Cambridge, England), 48(100), 12159–12161. https://doi.org/10.1039/c2cc35298b
  • Rahimi, R., Ochoa, M., Tamayol, A., Khalili, S., Khademhosseini, A., & Ziaie, B. (2017). Highly stretchable potentiometric ph sensor fabricated via laser carbonization and machining of carbon − polyaniline composite. ACS Applied Materials & Interfaces, 9(10), 9015–9023. https://doi.org/10.1021/acsami.6b16228
  • Ramírez, J., Rodriquez, D., Qiao, F., Warchall, J., Rye, J., Aklile, E., S.-C., Chiang, A., … Lipomi, D. J. (2018). Metallic nanoislands on graphene for monitoring swallowing activity in head and neck cancer patients. ACS Nano, 12(6), 5913–5922. https://doi.org/10.1021/acsnano.8b02133
  • Ren, J., Wang, C., Zhang, X., Carey, T., Chen, K., Yin, Y., & Torrisi, F. (2017). Environmentally-friendly conductive cotton fabric as flexible strain sensor based on hot press reduced graphene oxide. Carbon, 111, 622–630. https://doi.org/10.1016/j.carbon.2016.10.045
  • Rogers, J. A., Bao, Z., Baldwin, K., Dodabalapur, A., Crone, B., Raju, V. R., … Drzaic, P. (2001). Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proceedings of the National Academy of Sciences of the United States of America, 98(9), 4835–4840. https://doi.org/10.1073/pnas.091588098
  • Rojas, J. P., Torres Sevilla, G. A., Alfaraj, N., Ghoneim, M. T., Kutbee, A. T., Sridharan, A., & Hussain, M. M. (2015). Nonplanar nanoscale fin field effect transistors on textile, paper, wood, stone, and vinyl via soft material-enabled double-transfer printing. ACS Nano, 9(5), 5255–5263. https://doi.org/10.1021/acsnano.5b00686
  • Schafhaeutl, C. (1840). LXXXVI. On the combinations of carbon with silicon and iron, and other metals, forming the different species of cast iron, steel, and malleable iron. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 16(106), 570–590. https://doi.org/10.1080/14786444008650094
  • Schwarz, A., Van Langenhove, L., Guermonprez, P., & Deguillemont, D. (2010). A roadmap on smart textiles. Textile Progress., 42(2), 99–180. https://doi.org/10.1080/00405160903465220
  • Secor, E. B., Gao, T. Z., Islam, A. E., Rao, R., Wallace, S. G., Zhu, J., … Hersam, M. C. (2017). Enhanced conductivity, adhesion, and environmental stability of printed graphene inks with nitrocellulose. Chemistry of Materials, 29(5), 2332–2340. https://doi.org/10.1021/acs.chemmater.7b00029
  • Secor, E. B., Lim, S., Zhang, H., Frisbie, C. D., Francis, L. F., & Hersam, M. C. (2014). Gravure printing of graphene for large-area flexible electronics. Advanced Materials (Deerfield Beach, Fla.), 26(26), 4533–4538.
  • Secor, E. B., Prabhumirashi, P. L., Puntambekar, K., Geier, M. L., & Hersam, M. C. (2013). Inkjet printing of high conductivity, flexible graphene patterns. The Journal of Physical Chemistry Letters, 4(8), 1347–1351. https://doi.org/10.1021/jz400644c
  • Seesaard, T., Lorwongtragool, P., & Kerdcharoen, T. (2015). Development of fabric-based chemical gas sensors for use as wearable electronic noses. Sensors (Basel, Switzerland), 15(1), 1885–1902. https://doi.org/10.3390/s150101885
  • Seifert, T., Sowade, E., Roscher, F., Wiemer, M., Gessner, T., & Baumann, R. R. (2015). Additive manufacturing technologies compared: Morphology of deposits of silver ink using inkjet and aerosol jet printing. Industrial & Engineering Chemistry Research, 54(2), 769–779. https://doi.org/10.1021/ie503636c
  • Sekitani, T., Noguchi, Y., Zschieschang, U., Klauk, H., & Someya, T. (2008). Organic transistors manufactured using inkjet technology with subfemtoliter accuracy. Proceedings of the National Academy of Sciences of the United States of America, 105(13), 4976–4980. https://doi.org/10.1073/pnas.0708340105
  • Shin, H. J., Kim, K. K., Benayad, A., Yoon, S. M., Park, H. K., Jung, I. S., … Lee, Y. H. (2009). Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Advanced Functional Materials, 19(12), 1987–1992. https://doi.org/10.1002/adfm.200900167
  • Singh, M., Haverinen, H. M., Dhagat, P., & Jabbour, G. E. (2010). Inkjet printing-process and its applications. Advanced Materials (Deerfield Beach, Fla.), 22(6), 673–685. https://doi.org/10.1002/adma.200901141
  • Son, D., Lee, J., Qiao, S., Ghaffari, R., Kim, J., Lee, J. E., … Kim, D.-H. (2014). Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nature Nanotechnology, 9(5), 397–404. https://doi.org/10.1038/nnano.2014.38
  • Søndergaard, R., Hösel, M., Angmo, D., Larsen-Olsen, T. T., & Krebs, F. C. (2012). Roll-to-roll fabrication of polymer solar cells. Materials Today., 15(1–2), 36–49. https://doi.org/10.1016/S1369-7021(12)70019-6
  • Song, P., Xu, Z., Wu, Y., Cheng, Q., Guo, Q., & Wang, H. (2017). Super-tough artificial nacre based on graphene oxide via synergistic interface interactions of π-π stacking and hydrogen bonding. Carbon, 111, 807–812. https://doi.org/10.1016/j.carbon.2016.10.067
  • Song, Y., Min, J., & Gao, W. (2019). Wearable and implantable electronics: Moving toward precision therapy. ACS Nano, 13(11), 12280–12286.
  • Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., … Ruoff, R. S. (2006). Graphene-based composite materials. Nature, 442(7100), 282–286. https://doi.org/10.1038/nature04969
  • Stoppa, M., & Chiolerio, A. (2014). Wearable electronics and smart textiles: A critical review. Sensors (Basel, Switzerland), 14(7), 11957–11992. https://doi.org/10.3390/s140711957
  • Sudibya, H. G., He, Q., Zhang, H., & Chen, P. (2011). Electrical detection of metal ions using field-effect transistors based on micropatterned reduced graphene oxide films. ACS Nano, 5(3), 1990–1994. https://doi.org/10.1021/nn103043v
  • Suganuma, K. (2014). Introduction (Introduction to Printed Electronics (Vol. 74, pp. 1–22). New York, USA: Springer. https://doi.org/10.1007/978-1-4614-9625-0_1
  • Sun, J., Zhang, B., & Katz, H. E. (2011). Materials for printable, transparent, and low-voltage transistors. Advanced Functional Materials, 21(1), 29–45. https://doi.org/10.1002/adfm.201001530
  • Sutter, P. W., Flege, J.-I., & Sutter, E. A. (2008). Epitaxial graphene on ruthenium. Nature Materials, 7(5), 406–411. https://doi.org/10.1038/nmat2166
  • Tai, Y., & Lubineau, G. (2016). Double-twisted conductive smart threads comprising a homogeneously and a gradient-coated thread for multidimensional flexible pressure-sensing devices. Advanced Functional Materials, 26(23), 4078–4084. https://doi.org/10.1002/adfm.201600078
  • Taieb, A. H., Msahli, S., & Sakli, F. (2009). Design of illuminating textile curtain using solar energy. The Design Journal, 12(2), 195–216. https://doi.org/10.2752/175630609X433148
  • Tang, L., Li, X., Ji, R., Teng, K. S., Tai, G., Ye, J., … Lau, S. P. (2012). Bottom-up synthesis of large-scale graphene oxide nanosheets. Journal of Materials Chemistry, 22(12), 5676–5683. https://doi.org/10.1039/c2jm15944a
  • Tang, W., Yan, T., Wang, F., Yang, J., Wu, J., Wang, J., … Li, Z. (2019). Rapid fabrication of wearable carbon nanotube/graphite strain sensor for real-time monitoring of plant growth. Carbon, 147, 295–302. https://doi.org/10.1016/j.carbon.2019.03.002
  • Tee, B. C. K., & Ouyang, J. (2018). Soft electronically functional polymeric composite materials for a flexible and stretchable digital future. Advanced Materials, 30(47), 1802560. https://doi.org/10.1002/adma.201802560
  • Tomai, T., Nakayasu, Y., Okamura, Y., Ishiguro, S., Tamura, N., Katahira, S., & Honma, I. (2020). Bottom-up synthesis of graphene via hydrothermal cathodic reduction. Carbon, 158, 131–136. https://doi.org/10.1016/j.carbon.2019.11.052
  • Torrisi, F., Hasan, T., Wu, W., Sun, Z., Lombardo, A., Kulmala, T. S., … Ferrari, A. C. (2012). Inkjet-printed graphene electronics. ACS Nano, 6(4), 2992–3006. https://doi.org/10.1021/nn2044609
  • Trung, T. Q., Duy, L. T., Ramasundaram, S., & Lee, N.-E. (2017). Transparent, stretchable, and rapid-response humidity sensor for body-attachable wearable electronics. Nano Research, 10(6), 2021–2033. https://doi.org/10.1007/s12274-016-1389-y
  • Tung, V. C., Allen, M. J., Yang, Y., & Kaner, R. B. (2009). High-throughput solution processing of large-scale graphene. Nature Nanotechnology, 4(1), 25–29. https://doi.org/10.1038/nnano.2008.329
  • Tyler, D., Wood, J., Sabir, T., McDonnell, C., Sayem, A. S. M., & Whittaker, N. (2019). Wearable electronic textiles. Textile Progress., 51(4), 299–384. https://doi.org/10.1080/00405167.2020.1840151
  • Vallés, C., Drummond, C., Saadaoui, H., Furtado, C. A., He, M., Roubeau, O., … Pénicaud, A. (2008). Solutions of negatively charged graphene sheets and ribbons. Journal of the American Chemical Society, 130(47), 15802–15804. https://doi.org/10.1021/ja808001a
  • Varghese, S. S., Lonkar, S., Singh, K. K., Swaminathan, S., & Abdala, A. (2015). Recent advances in graphene based gas sensors. Sensors and Actuators B: Chemical, 218, 160–183. https://doi.org/10.1016/j.snb.2015.04.062
  • Von Dollen, P., & Barnett, S. (2005). A study of screen printed Yttria-stabilized zirconia layers for solid oxide fuel cells. Journal of the American Ceramic Society, 88(12), 3361–3368. https://doi.org/10.1111/j.1551-2916.2005.00625.x
  • Vooris, R., Blaszka, M., & Purrington, S. (2019). Understanding the wearable fitness tracker revolution. International Journal of the Sociology of Leisure, 2(4), 421–437. https://doi.org/10.1007/s41978-018-00022-y
  • Wagner, S., & Bauer, S. (2012). Materials for stretchable electronics. MRS Bulletin, 37(3), 207–213. https://doi.org/10.1557/mrs.2012.37
  • Wang, C., Xia, K., Wang, H., Liang, X., Yin, Z., & Zhang, Y. (2019). Advanced carbon for flexible and wearable electronics. Advanced Materials, 31(9), 1801072. https://doi.org/10.1002/adma.201801072
  • Wang, D.-Y., Chang, Y., Wang, Y.-X., Zhang, Q., & Yang, Z.-G. (2016). Green water-based silver nanoplate conductive ink for flexible printed circuit. Materials Technology, 31(1), 32–37. https://doi.org/10.1179/1753555715Y.0000000023
  • Wang, G., Wang, Z., Liu, Z., Xue, J., Xin, G., Yu, Q., … Chen, M. Y. (2015). Annealed graphene sheets decorated with silver nanoparticles for inkjet printing. Chemical Engineering Journal and the Biochemical Engineering Journal, 260, 582–589. https://doi.org/10.1016/j.cej.2014.09.037
  • Wang, K., Li, J., Li, W., Wei, W., Zhang, H., & Wang, L. (2018). Highly active co-based catalyst in nanofiber matrix as advanced sensing layer for high selectivity of flexible sensing device. Advanced Materials Technologies, 4(2), 1800521. https://doi.org/10.1002/admt.201800521
  • Wang, K., Lou, Z., Wang, L., Zhao, L., Zhao, S., Wang, D., … Shen, G. (2019). Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors. ACS Nano, 13(8), 9139–9147. https://doi.org/10.1021/acsnano.9b03454
  • Wang, L., Jackman, J. A., Park, J. H., Tan, E.-L., & Cho, N.-J. (2017). A flexible, ultra-sensitive chemical sensor with 3D biomimetic templating for diabetes-related acetone detection. Journal of Materials Chemistry. B, 5(22), 4019–4024. https://doi.org/10.1039/C7TB00787F
  • Wang, L., Lou, Z., Wang, R., Fei, T., & Zhang, T. (2012). Ring-like PdO–NiO with lamellar structure for gas sensor application. Journal of Materials Chemistry, 22(25), 12453. https://doi.org/10.1039/c2jm16509k
  • Wang, N., Yang, A., Fu, Y., Li, Y., & Yan, F. (2019). Functionalized organic thin film transistors for biosensing. Accounts of Chemical Research, 52(2), 277–287. https://doi.org/10.1021/acs.accounts.8b00448
  • Wang, S., Xu, J., Wang, W., Wang, G.-J. N., Rastak, R., Molina-Lopez, F., … Bao, Z. (2018). Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature, 555(7694), 83–88. https://doi.org/10.1038/nature25494
  • Wang, S., Zhang, Y., Abidi, N., & Cabrales, L. (2009). Wettability and surface free energy of graphene films. Langmuir: The ACS Journal of Surfaces and Colloids, 25(18), 11078–11081. https://doi.org/10.1021/la901402f
  • Wang, X., Liu, Z., & Zhang, T. (2017). Flexible sensing electronics for wearable/attachable health monitoring. Small, 13(25), 1602790. https://doi.org/10.1002/smll.201602790
  • Wang, Y., Qiu, Y., Ameri, S. K., Jang, H., Dai, Z., Huang, Y., & Lu, N. (2018). Low-cost, μm-thick, tape-free electronic tattoo sensors with minimized motion and sweat artifacts. NPJ Flexible Electron, 2(1), 1–7. https://doi.org/10.1038/s41528-017-0019-4
  • Wang, Y., Wang, L., Yang, T., Li, X., Zang, X., Zhu, M., … Zhu, H. (2014). Wearable and highly sensitive graphene strain sensors for human motion monitoring. Advanced Functional Materials, 24(29), 4666–4670. https://doi.org/10.1002/adfm.201400379
  • Wang, Y., Xu, X., Lu, J., Lin, M., Bao, Q., Özyilmaz, B., & Loh, K. P. (2010). Toward high throughput interconvertible graphane-to-graphene growth and patterning. ACS Nano, 4(10), 6146–6152. https://doi.org/10.1021/nn1017389
  • Wang, Z., Zhang, J., Chen, P., Zhou, X., Yang, Y., Wu, S., … Zhang, H. (2011). Label-free, electrochemical detection of methicillin-resistant Staphylococcus aureus DNA with reduced graphene oxide-modified electrodes. Biosensors & Bioelectronics, 26(9), 3881–3886. https://doi.org/10.1016/j.bios.2011.03.002
  • Webb, R. C., Bonifas, A. P., Behnaz, A., Zhang, Y., Yu, K. J., Cheng, H., … Rogers, J. A. (2013). Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nature Materials, 12(10), 938–944. https://doi.org/10.1038/nmat3755
  • Wehling, T. O., Novoselov, K. S., Morozov, S. V., Vdovin, E. E., Katsnelson, M. I., Geim, A. K., & Lichtenstein, A. I. (2008). Molecular doping of graphene. Nano Letters, 8(1), 173–177. https://doi.org/10.1021/nl072364w
  • Wei, D., Li, H., Han, D., Zhang, Q., Niu, L., Yang, H., … Ryhänen, T. (2011). Properties of graphene inks stabilized by different functional groups. Nanotechnology, 22(24), 245702. https://doi.org/10.1088/0957-4484/22/24/245702
  • Wei, X., Meng, Z., Ruiz, L., Xia, W., Lee, C., Kysar, J. W., … Espinosa, H. D. (2016). Recoverable slippage mechanism in multilayer graphene leads to repeatable energy dissipation. ACS Nano, 10(2), 1820–1828. https://doi.org/10.1021/acsnano.5b04939
  • Windmiller, J. R., Bandodkar, A. J., Parkhomovsky, S., & Wang, J. (2012). Stamp transfer electrodes for electrochemical sensing on non-planar and oversized surfaces. The Analyst, 137(7), 1570–1575. https://doi.org/10.1039/c2an35041f
  • Wu, C.-H., Wang, W.-H., Hong, C.-C., & Hwang, K. C. (2016). A disposable breath sensing tube with on-tube single-nanowire sensor array for on-site detection of exhaled breath biomarkers. Lab on a Chip, 16(22), 4395–4405. https://doi.org/10.1039/C6LC01157H
  • Wu, J.-T., Lien-Chung Hsu, S., Tsai, M.-H., Liu, Y.-F., & Hwang, W.-S. (2012). Direct ink-jet printing of silver nitrate–silver nanowire hybrid inks to fabricate silver conductive lines. Journal of Materials Chemistry, 22(31), 15599. https://doi.org/10.1039/c2jm31761c
  • Wu, S., Yin, Z., He, Q., Huang, X., Zhou, X., & Zhang, H. (2010). Electrochemical deposition of semiconductor oxides on reduced graphene oxide-based flexible, transparent, and conductive electrodes. The Journal of Physical Chemistry C, 114(27), 11816–11821. https://doi.org/10.1021/jp103696u
  • Xiao, N., Dong, X., Song, L., Liu, D., Tay, Y., Wu, S., … Yan, Q. (2011). Enhanced thermopower of graphene films with oxygen plasma treatment. ACS Nano, 5(4), 2749–2755. https://doi.org/10.1021/nn2001849
  • Xu, Y., Hennig, I., Freyberg, D., James Strudwick, A., Georg Schwab, M., Weitz, T., & Chih-Pei Cha, K. (2014). Inkjet-printed energy storage device using graphene/polyaniline inks. Journal of Power Sources, 248, 483–488. https://doi.org/10.1016/j.jpowsour.2013.09.096
  • Yamashita, T., Takamatsu, S., Okada, H., Itoh, T., & Kobayashi, T. (2016). Ultra-thin piezoelectric strain sensor array integrated on a flexible printed circuit involving transfer printing methods. IEEE Sensors Journal, 16(24), 8840–8846. https://doi.org/10.1109/JSEN.2016.2578936
  • Yan, J., Yang, X., Sun, X., Chen, Z., & Liu, H. (2019). A lightweight ultrasound probe for wearable human–machine interfaces. IEEE Sensors Journal, 19(14), 5895–5903. https://doi.org/10.1109/JSEN.2019.2905243
  • Yang, C., Veiga, C., Rodriguez-Andina, J. J., Farina, J., Iniguez, A., & Yin, S. (2019). Using PPG signals and wearable devices for atrial fibrillation screening. IEEE Transactions on Industrial Electronics, 66(11), 8832–8842. https://doi.org/10.1109/TIE.2018.2889614
  • Yang, W., & Wang, C. (2016). Graphene and the related conductive inks for flexible electronics. Journal of Materials Chemistry C, 4(30), 7193–7207. https://doi.org/10.1039/C6TC01625A
  • Yang, W-D., Liu, C-y., Zhang, Z-y., Liu, Y., & Nie, S-D. (2014). Copper inks formed using short carbon chain organic Cu-precursors. RSC Advances., 4(104), 60144–60147. https://doi.org/10.1039/C4RA09318F
  • Yang, X., Ma, L., Wang, S., Li, Y., Tu, Y., & Zhu, X. (2011). Clicking” graphite oxide sheets with well-defined polystyrenes: A new strategy to control the layer thickness. Polymer, 52(14), 3046–3052. https://doi.org/10.1016/j.polymer.2011.04.062
  • Yin, Z., Sun, S., Salim, T., Wu, S., Huang, X., He, Q., … Zhang, H. (2010). Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrodes. ACS Nano, 4(9), 5263–5268. https://doi.org/10.1021/nn1015874
  • Yin, Z., Wu, S., Zhou, X., Huang, X., Zhang, Q., Boey, F., & Zhang, H. (2010). Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells. Small (Weinheim an Der Bergstrasse, Germany), 6(2), 307–312. https://doi.org/10.1002/smll.200901968
  • Yonezawa, T., Tsukamoto, H., Yong, Y., Nguyen, M. T., & Matsubara, M. (2016). Low temperature sintering process of copper fine particles under nitrogen gas flow with Cu2+ -alkanolamine metallacycle compounds for electrically conductive layer formation. RSC Advances, 6(15), 12048–12052. https://doi.org/10.1039/C5RA25058G
  • Zamarayeva, A. M., Ostfeld, A. E., Wang, M., Duey, J. K., Deckman, I., Lechêne, B. P., … Arias, A. C. (2017). Flexible and stretchable power sources for wearable electronics. Science Advances, 3(6), 1–10. https://doi.org/10.1126/sciadv.1602051
  • Zhang, C., Zhang, J., Chen, D., Meng, X., Liu, L., Wang, K., … Ren, L. (2020). Crack-based and hair-like sensors inspired from arthropods: A review. Journal of Bionic Engineering, 17(5), 867–898. https://doi.org/10.1007/s42235-020-0092-6
  • Zhang, Q., Huang, L., Chang, Q., Shi, W., Shen, L., & Chen, Q. (2016). Gravure-printed interdigital microsupercapacitors on a flexible polyimide substrate using crumpled graphene ink. Nanotechnology, 27(10), 105401. https://doi.org/10.1088/0957-4484/27/10/105401
  • Zhang, S., Hao, A., Liu, Z., Park, J. G., & Liang, R. (2019). A highly stretchable polyacrylonitrile elastomer with nanoreservoirs of lubricant using cyano-silver complexes. Nano Letters, 19(6), 3871–3877. https://doi.org/10.1021/acs.nanolett.9b01055
  • Zhao, L., Wang, K., Wei, W., Wang, L., & Han, W. (2019). High-performance flexible sensing devices based on polyaniline/MXene nanocomposites. InfoMat, 1(3), 407–416. https://doi.org/10.1002/inf2.12032
  • Zhong, J., Zhang, Y., Zhong, Q., Hu, Q., Hu, B., Wang, Z. L., & Zhou, J. (2014). Fiber-based generator for wearable electronics and mobile medication. ACS Nano, 8(6), 6273–6280.
  • Zhou, K., Zhang, C., Xiong, Z., Chen, H. Y., Li, T., Ding, G., … Han, S. T. (2020). Template-directed growth of hierarchical MOF hybrid arrays for tactile sensor. Advanced Functional Materials, 30(38), 2001296. https://doi.org/10.1002/adfm.202001296
  • Zhou, W., Guan, H., Sun, K., Xing, Y., & Zhang, J. (2019). FeOOH/polypyrrole nanocomposites with an islands-in-sea structure toward combined photothermal/chemodynamic therapy. ACS Applied Bio Materials, 2(7), 2708–2714. https://doi.org/10.1021/acsabm.9b00435
  • Zhou, X., Huang, X., Qi, X., Wu, S., Xue, C., Boey, F. Y. C., … Zhang, H. (2009). In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. The Journal of Physical Chemistry C, 113(25), 10842–10846. https://doi.org/10.1021/jp903821n
  • Zhou, X., Wei, Y., He, Q., Boey, F., Zhang, Q., & Zhang, H. (2010). Reduced graphene oxide films used as matrix of MALDI-TOF-MS for detection of octachlorodibenzo-p-dioxin. Chemical Communications (Cambridge, England), 46(37), 6974–6976. https://doi.org/10.1039/c0cc01681k
  • Zhou, X., Xue, Z., Chen, X., Huang, C., Bai, W., Lu, Z., & Wang, T. (2020). Nanomaterial-based gas sensors used for breath diagnosis. Journal of Materials Chemistry. B, 8(16), 3231–3248. https://doi.org/10.1039/C9TB02518A

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.