107
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Auxetic textiles, composites and applications

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abderrezak, A., & Scarpa, F. (2007). Mechanical behaviour of conventional and negative Poisson’s ratio thermoplastic polyurethane foams under compressive cyclic loading. International Journal of Fatigue, 29(5), 922–930. https://doi.org/10.1016/j.ijfatigue.2006.07.015
  • Ai, L., & Gao, X. L. (2018). An analytical model for star-shaped re-entrant lattice structures with the orthotropic symmetry and negative Poisson’s ratios. International Journal of Mechanical Sciences, 145(May), 158–170. https://doi.org/10.1016/j.ijmecsci.2018.06.027
  • Akgun, M., Eren, R., Suvari, F., & Yurdakul, T. (2021). Investigation of the effect of pique weave on auxetic performance and related fabric properties. The Journal of the Textile Institute, 113(11), 2369–2380. https://doi.org/10.1080/00405000.2021.1983978
  • Alderson, A., & Alderson, K. L. (2007). Auxetic materials. Proceedings of the Institution of Mechanical Engineers, Part G, 221(4), 565–575. https://doi.org/10.1243/09544100JAERO185
  • Alderson, A., & Evans, K. E. (1995). Microstructural modelling of auxetic microporous polymers. Journal of Materials Science, 30(13), 3319–3332. https://doi.org/10.1007/BF00349875
  • Alderson, A., & Evans, K. E. (1997). Modelling concurrent deformation mechanisms in auxetic microporous polymers a 2d model for the deformation of auxetic microporous polymers (those with a negative. Journal of Materials Science, 32(11), 2797–2809. https://doi.org/10.1023/A:1018660130501
  • Alderson, A., Rasburn, J., & Evans, K. E. (2007). Mass transport properties of auxetic (negative Poisson’s ratio) foams. Physica Status Solidi (b), 244(3), 817–827. https://doi.org/10.1002/pssb.200572701
  • Alderson, A., Rasburn, J., Evans, K. E., & Grima, J. N. (2001). Auxetic polymeric filters display enhanced de-fouling and pressure compensation properties. Membrane Technology, 2001(137), 6–8. https://doi.org/10.1016/S0958-2118(01)80299-8
  • Alderson, A., Lesley Alderson, K., & Sanami, M. (2013). Auxetic polypropylene fibres: Part 1 - Manufacture and characterisation. Plastics, Rubber and Composites, 31, 344–349.
  • Alderson, A., Rasburn, J., Ameer-Beg, S., Mullarkey, P. G., Perrie, W., & Evans, K. E. (2000). An auxetic filter: A Tuneable filter displaying enhanced size selectivity or defouling properties. Industrial & Engineering Chemistry Research, 39(3), 654–665. https://doi.org/10.1021/ie990572w
  • Alderson, K. L., Alderson, A., Davies, P. J., Smart, G., Ravirala, N., & Simkins, G. (2007). The effect of processing parameters on the mechanical properties of auxetic polymeric fibers. Journal of Materials Science, 42(19), 7991–8000. https://doi.org/10.1007/s10853-006-1325-8
  • Alderson, K. L., Alderson, A., Smart, G., Simkins, V. R., & Davies, P. J. (2002). Auxetic polypropylene fibres: Part 1 – Manufacture and characterisation. Plastics, Rubber and Composites, 31(8), 344–349. https://doi.org/10.1179/146580102225006495
  • Alderson, K. L., & Coenen, V. L. (2008). The low velocity impact response of Auxetic carbon Fibre laminates. Physica Status Solidi (b), 245(3), 489–496. https://doi.org/10.1002/pssb.200777701
  • Alderson, K. L., & Evans, K. E. (1992). The fabrication of microporous polyethylene having a negative Poisson’s ratio. Polymer, 33(20), 4435–4438. https://doi.org/10.1016/0032-3861(92)90294-7
  • Alderson, K. L., Simkins, V. R., Coenen, V. L., Davies, P. J., Alderson, A., & Evans, K. E. (2005). How to make Auxetic Fibre reinforced composites. Physica Status Solidi (B) Basic (b), 242(3), 509–518. https://doi.org/10.1002/pssb.200460371
  • Alderson, K. L., Webber, R. S., Kettle, A. P., & Evans, K. E. (2005). Novel fabrication route for auxetic polyethylene. Part 1. Processing and microstructure. Polymer Engineering & Science, 45(4), 568–578. https://doi.org/10.1002/pen.20311
  • Alderson, K. L., Webber, R. S., Mohammed, U. F., Murphy, E., & Evans, K. E. (1997). An experimental study of ultrasonic attenuation in microporous polyethylene. Applied Acoustics, 50(1), 23–33. https://doi.org/10.1016/S0003-682X(96)00023-0
  • Alderson, K., Alderson, A., Anand, S., Simkins, V., Nazare, S., & Ravirala, N. (2012). Auxetic warp knit textile structures. Physica Status Solidi (B) Basic (b), 249(7), 1322–1329. https://doi.org/10.1002/pssb.201084216
  • Alderson, K., Nazaré, S., & Alderson, A. (2016). Large-scale extrusion of auxetic polypropylene fibre. Physica Status Solidi (B) Basic (b), 253(7), 1279–1287. https://doi.org/10.1002/pssb.201600079
  • Ali, M., Zeeshan, M., Ahmed, S., Qadir, B., Nawab, Y., Anjum, A. S., & Riaz, R. (2018). Development and comfort characterization of 2d-woven auxetic fabric for wearable and medical textile applications. Clothing and Textiles Research Journal, 36(3), 199–214. https://doi.org/10.1177/0887302X18768048
  • Ali, M., Zeeshan, M., Qadir, M. B., Riaz, R., Ahmad, S., Nawab, Y., & Anjum, A. S. (2018). Development and mechanical characterization of weave design based 2d woven auxetic fabrics for protective textiles. Fibers and Polymers, 19(11), 2431–2438. https://doi.org/10.1007/s12221-018-8627-8
  • Ali, M. N., & Rehman, I. U. (2011). An auxetic structure configured as oesophageal stent with potential to be used for palliative treatment of oesophageal cancer; development and in vitro mechanical analysis. Journal of Materials Science. Materials in Medicine, 22(11), 2573–2581. https://doi.org/10.1007/s10856-011-4436-y
  • Ali, M. N., Busfield, J. J. C., & Rehman, I. U. (2014). Auxetic oesophageal stents: Structure and mechanical properties. Journal of Materials Science. Materials in Medicine, 25(2), 527–553. https://doi.org/10.1007/s10856-013-5067-2
  • Ali, M. N., & Rehman, I. U. (2015). Auxetic polyurethane stents and stent-grafts for the palliative treatment of squamous cell carcinomas of the proximal and mid Oesophagus: a novel fabrication route. Journal of Manufacturing Systems, 37, 375–395. https://doi.org/10.1016/j.jmsy.2014.07.009
  • Amin, F., Najabat Ali, M., Ansari, U., Mir, M., Minhas, M. A., & Shahid, W. (2015). Journal of Applied Biomaterials & Functional Materials, 13(2), E127–35. auxetic coronary stent endoprosthesis: fabrication and structural analysis. https://doi.org/10.5301/jabfm.5000213
  • Anas, M., Sohaib, H., Awais, S., Talha, A., Hamdani, K., Shaker, Z., Azam, Y. & Nawab, Y. (2022). Investigating the thermo-physiological comfort properties of weft-knitted smart structures having a negative Poisson’s ratio. Advances in Materials Science and Engineering, 2022, 14. https://doi.org/10.1155/2022/1896634
  • Argatov, I. I., Guinovart-Díaz, R., & Sabina, F. J. (2012). On local indentation and impact compliance of isotropic auxetic materials from the continuum mechanics viewpoint. International Journal of Engineering Science, 54, 42–57. https://doi.org/10.1016/j.ijengsci.2012.01.010
  • Arjunan, A., Zahid, S., Baroutaji, A., & Robinson, J. (2021). 3d printed Auxetic nasopharyngeal swabs for Covid-19 sample collection. Journal of the Mechanical Behavior of Biomedical Materials, 114(August 2020), 104175. https://doi.org/10.1016/j.jmbbm.2020.104175
  • Attard, D., & Grima, J. N. (2008). Auxetic behaviour from rotating rhombi. Physica Status Solidi (b), 245(11), 2395–2404. https://doi.org/10.1002/pssb.200880269
  • Attard, D., Manicaro, E., & Grima, J. N. (2009). On rotating rigid parallelograms and their potential for exhibiting auxetic behaviour. Physica Status Solidi (b), 246 (9), 2033–2044. https://doi.org/10.1002/pssb.200982034
  • Bertoldi, K., Boyce, M. C., Deschanel, S., Prange, S. M., & Mullin, T. (2008). Mechanics of deformation-triggered pattern transformations and superelastic behaviour in periodic elastomeric structures. Journal of the Mechanics and Physics of Solids, 56(8), 2642–2668. https://doi.org/10.1016/j.jmps.2008.03.006
  • Bezazi, A., Boukharouba, W., & Scarpa, F. (2009). Mechanical properties of auxetic carbon/epoxy composites: Static and cyclic fatigue behaviour. Physica Status Solidi (B) Basic (b), 246(9), 2102–2110. https://doi.org/10.1002/pssb.200982042
  • Bhattacharya, S., Zhang, G. H., Ghita, O., & Evans, K. E. (2014). The variation in Poisson’s ratio caused by interactions between core and wrap in helical composite auxetic yarns. Composites Science and Technology, 102, 87–93. https://doi.org/10.1016/j.compscitech.2014.07.023
  • Bhullar, S. K. (2015). Three decades of auxetic polymers: A review. e-Polymers, 15(4), 205–215. https://doi.org/10.1515/EPOLY-2014-0193/PDF
  • Bhullar, S. K., Rana, D., Lekesiz, H., Bedeloglu, A. C., Ko, J., Cho, Y., Aytac, Z., Uyar, T., Jun, M., & Ramalingam, M. (2017). Design and fabrication of auxetic pcl nanofiber membranes for biomedical applications. Materials Science & Engineering. C, Materials for Biological Applications, 81(August), 334–340. https://doi.org/10.1016/j.msec.2017.08.022
  • Bianchi, M., Frontoni, S., Scarpa, F., & Smith, C. W. (2011). Density change during the manufacturing process of pu-pe open cell auxetic foams. Physica Status Solidi (B) Basic (b) , 248(1), 30–38. https://doi.org/10.1002/pssb.201083966
  • Bianchi, M., Scarpa, F., Banse, M., & Smith, C. W. (2011). Novel generation of Auxetic open cell foams for curved and arbitrary shapes. Acta Materialia, 59(2), 686–691. https://doi.org/10.1016/j.actamat.2010.10.006
  • Bianchi, M., Scarpa, F., & Smith, C. W. (2010). Shape memory behaviour in auxetic foams: Mechanical properties. Acta Materialia, 58(3), 858–865. https://doi.org/10.1016/j.actamat.2009.09.063
  • Bianchi, M., Scarpa, F. L., & Smith, C. W. (2008). Stiffness and energy dissipation in polyurethane auxetic foams. Journal of Materials Science, 43(17), 5851–5860. https://doi.org/10.1007/s10853-008-2841-5
  • Blast Curtain – Advanced Fabric Technologies (n.d). Xtegra blast curtains. Retrieved May 19, 2023 (https://advancedfabrictechnology.com/blast-curtain/).
  • Boakye, A., Chang, Y., Rafiu, K. R., & Ma, P. (2018). Design and manufacture of knitted tubular fabric with auxetic effect. The Journal of the Textile Institute, 109(5), 596–602. https://doi.org/10.1080/00405000.2017.1361582
  • Boakye, A., & Jiang, G. (2016). Review on the knitted structures with Auxetic effect. The Journal of the Textile Institute, 108(6), 947–961. https://doi.org/10.1080/00405000.2016.1204901
  • Bouaziz, O., Masse, J. P., Allain, S., Orgéas, L., & Latil, P. (2013). Compression of crumpled aluminum thin foils and comparison with other cellular materials. Materials Science and Engineering, 570, 1–7. https://doi.org/10.1016/j.msea.2013.01.031
  • Buchan, P. A., & Chen, J. F. (2007). Blast resistance of frp composites and polymer strengthened concrete and masonry structures – a state-of-the-art review. Composites Part B, 38(5–6), 509–522. https://doi.org/10.1016/j.compositesb.2006.07.009
  • Budarapu, P. R., Sudhir Sastry, Y. B., & Natarajan, R. (2016). Design concepts of an aircraft wing: Composite and morphing airfoil with Auxetic structures. Frontiers of Structural and Civil Engineering, 10(4), 394–408. https://doi.org/10.1007/s11709-016-0352-z
  • Burriesci, G., & Bergamasco, G. (2011). Annuloplasty prosthesis with an auxetic structure. U.S. Patent No. 8,034,103 B2.
  • Caddock, B. D., & Evans, K. E. (1989). Microporous materials with negative Poisson’s ratios. i. microstructure and mechanical properties. Journal of Physics D, 22(12), 1877–1882. https://doi.org/10.1088/0022-3727/22/12/012
  • Cao, H., Zulifqar, A., Hua, T., & Hu, H. (2019). Bi-stretch Auxetic woven fabrics based on foldable geometry. Textile Research Journal, 89(13), 2694–2712. https://doi.org/10.1177/0040517518798646
  • Carneiro, V. H., Meireles, J., & Puga, H. (2013). Auxetic materials – A review. Materials Science-Poland, 31(4), 561–571. https://doi.org/10.2478/s13536-013-0140-6
  • Chan, N., & Evans, K. E. (1997). Fabrication methods for Auxetic foams. Journal of Materials Science, 32(22), 5945–5953. https://doi.org/10.1023/A:1018606926094
  • Chang, Y., & Ma, P. (2018). Fabrication and property of Auxetic warp-knitted spacer structures with mesh. Textile Research Journal, 88(19), 2206–2213. https://doi.org/10.1177/0040517517716910
  • Chang, Y., Ma, P., & Jiang, G. (2017). Energy absorption property of warp-knitted spacer fabrics with negative Poisson’s ratio under low velocity impact. Composite Structures, 182, 471–477. https://doi.org/10.1016/j.compstruct.2017.09.065
  • Chekkal, I., Remillat, C., & Scarpa, F. (2012). Acoustic properties of Auxetic foams. WIT Transactions on the Built Environment, 124, 119–129. https://doi.org/10.2495/HPSM120111
  • Chen, C. P., & Lakes, R. S. (1989). Dynamic wave dispersion and loss properties of conventional and negative Poisson’s ratio polymeric cellular materials. Cellular Polymers, 8(5), 343–359. https://doi.org/10.1177/026248938900800501
  • Chen, J., & Du, Z. (2020). Structural design and performance characterization of stable helical Auxetic yarns based on the hollow-spindle covering system. Textile Research Journal, 90(3–4), 271–281. https://doi.org/10.1177/0040517519862881
  • Chen, L., Chen, C., Jin, L., Guo, H., Wang, A. C., Ning, F., Xu, Q., Du, Z., Wang, F., & Wang, Z. L. (2021). Stretchable negative Poisson’s ratio yarn for triboelectric nanogenerator for environmental energy harvesting and self-powered sensor. Energy & Environmental Science, 14(2), 955–964. https://doi.org/10.1039/D0EE02777D
  • Chen, Q., & Pugno, N. M. (2012). In-plane elastic buckling of hierarchical honeycomb materials. European Journal of Mechanics – A/Solids , 34, 120–129. https://doi.org/10.1016/j.euromechsol.2011.12.003
  • Chen, Y. J., Scarpa, F., Farrow, I. R., Liu, Y. J., & Leng, J. S. (2013). Composite flexible skin with large negative Poisson’s ratio range: Numerical and experimental analysis. Smart Materials and Structures, 045005. https://doi.org/10.1088/0964-1726/22/4/045005
  • Chen, Y., Jiang, N., & Hu, H. (2019). Mechanical modelling of an Auxetic tubular braided structure: Experimental and numerical analyses. International Journal of Mechanical Sciences, 160, 182–191. https://doi.org/10.1016/j.ijmecsci.2019.06.041
  • Chen, Y., Zulifqar, A., & Hu, H. (2020). Auxeticity from the folded geometry: A numerical study. Physica Status Solidi (b), 257(3), 1900361. https://doi.org/10.1002/pssb.201900361
  • Chen, Z., Wang, Z., Wu, X., Shao, J., & Zhou, S. (2019). Dynamic impact properties of a novel Auxetic metamaterial. In ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), Vol. 12. https://doi.org/10.1115/IMECE2019-10865
  • Cho, H., Seo, D., & Kim, D-n. (2019). Mechanics of Auxetic materials. In Handbook of Mechanics of Materials (pp. 733–757).
  • Choi, H. J., Lee, J. J., Park, Y. J., Shin, J-W., Sung, H-J., Shin, J. W., Wu, Y., & Kim, J. K. (2016). Mg-63 osteoblast-like cell proliferation on Auxetic PLGA scaffold with mechanical stimulation for bone tissue regeneration. Biomaterials Research, 20, 33. https://doi.org/10.1186/s40824-016-0080-4
  • Choi, J. B., & Lakes, R. S. (1992). Non-linear properties of polymer cellular materials with a negative Poisson’s ratio. Journal of Materials Science, 27(17), 4678–4684. https://doi.org/10.1007/BF01166005
  • Choi, J. B., & Lakes, R. S. (1995). Analysis of elastic modulus of conventional foams and of re-entrant foam materials with a negative Poisson’s ratio. International Journal of Mechanical Sciences, 37(1), 51–59. https://doi.org/10.1016/0020-7403(94)00047-N
  • Choudhry, N. K., Panda, B., & Kumar, S. (2022). In-plane energy absorption characteristics of a modified re-entrant Auxetic structure fabricated via 3d printing. Composites Part B, 228, 109437. https://doi.org/10.1016/j.compositesb.2021.109437
  • Clarke, J. F., Duckett, R. A., Hine, P. J., Hutchinson, I. J., & Ward, I. M. (1994). Negative Poisson’s ratios in angle-ply laminates: Theory and experiment. Composites, 25(9), 863–868. https://doi.org/10.1016/0010-4361(94)90027-2
  • Critchley, R., Corni, I., Wharton, J. A., Walsh, F. C., Wood, R. J. K., & Stokes, K. R. (2013). A review of the manufacture, mechanical properties and potential applications of Auxetic foams. Physica Status Solidi (B) Basic (b), 250(10), 1963–1982. https://doi.org/10.1002/pssb.201248550
  • Cuthbert, T. J., Hannigan, B. C., Roberjot, P., Shokurov, A. V., & Menon, C. (2023). Hacs: Helical Auxetic yarn capacitive strain sensors with sensitivity beyond the theoretical limit. Advanced Materials, 35(10), e2209321. https://doi.org/10.1002/adma.202209321
  • Darja, R., & Pavko-Čuden, A. (2013). Production of foldable weft knitted structures with Auxetic potential. In International Symposium in Knitting and Apparel – ISKA 2013.
  • Dash, A., & Behera, B. (2018). Role of stuffer layers and fibre volume fractions on the mechanical properties of 3d woven fabrics for structural composites applications. The Journal of the Textile Institute, 110(4), 614–624. https://doi.org/10.1080/00405000.2018.1502502
  • Dalmazzo, D., Barpi, F., Riviera, P. P., & Baglieri, O. (2020). Auxetic materials in civil construction: State of the art and preliminary experimental investigation (web thesis). https://webthesis.biblio.polito.it/15195/
  • Deshpande, M. V., West, A. J., Bernacki, S. H., Luan, K., & King, M. W. (2020). Poly(ε-caprolactone) resorbable Auxetic designed knitted scaffolds for craniofacial skeletal muscle regeneration. Bioengineering, 7(4), 134. https://doi.org/10.3390/bioengineering7040134
  • Donoghue, J. P., Alderson, K. L., & Evans, K. E. (2009). The fracture toughness of composite laminates with a negative Poisson’s ratio. Physica Status Solidi (b), 246(9), 2011–2017. https://doi.org/10.1002/pssb.200982031
  • Du, Z., Zhou, M., He, L., & Liu, H. (2014). Study on negative Poisson’s ratio of Auxetic yarn under tension: Part 2 – Experimental verification. Textile Research Journal, 85(7), 768–774. https://doi.org/10.1177/0040517514549987
  • Du, Z., Zhou, M., Liu, H., & He, L. (2014). Study on negative Poisson’s ratio of Auxetic Yarn under tension: Part 1 – Theoretical analysis. Textile Research Journal, 85(5), 487–498. https://doi.org/10.1177/0040517514549985
  • Dubrovski, P., Dobnik, N., Novak, M., Borovinšek, M., Vesenjak, Z. & Ren, X. J. (2019). In-plane behaviour of Auxetic non-woven fabric based on rotating square unit geometry under tensile load. Polymers, 11(6), 40. https://doi.org/10.3390/polym11061040
  • Duncan, O., T., Shepherd, C., Moroney, L., Foster, Praburaj, D., Venkatraman, K., Winwood, T., Allen, A. & Alderson, K. L. (2018). Review of Auxetic materials for sports applications: Expanding options in comfort and protection. Applied Sciences, 8(6), 941. https://doi.org/10.3390/app8060941
  • Ergene, B., & Yalçın, B. (2019). Finite element analysis for compression behaviour of polymer based honeycomb and re-entrant structures. The Journal of Strain Analysis for Engineering Design, 54(1), 36–43.
  • Evans, K. (n.d.). Expanding blast-proof curtain will reduce impact of bomb explosions. EPSRC.
  • Evans, K. E., Alderson, A., & Christian, F. R. (1995). Auxetic two-dimensional polymer networks. Journal of Chemical Society, 91(16), 2671–2680.
  • Evans, K. E., & Alderson, A. (2000). Auxetic materials: Functional materials and structures from lateral thinking!. Advanced Materials, 12(9), 617–628. https://doi.org/10.1002/(SICI)1521-4095(200005)12:9<617::AID-ADMA617>3.0.CO;2-3
  • F, L. N. G. (1920). A treatise on the mathematical theory of elasticity. Nature, 105(2643), 511–512. https://doi.org/10.1038/105511a0
  • Faisal, N. A., Mcleod, F., Booth, L., Scott, Scott Duncan, & Droubi, G. (2018). Auxetic structures for marine safety applications (rope, sandwich panel). (March). https://nadimulfaisal.files.wordpress.com/2018/11/imarest-rgu-faisal-28mar2018-v0.pdf
  • Fan, D., Shi, Z., Li, N., Qiu, J., Xing, H., Jiang, Z., Li, M., & Tang, T. (2020). Novel method for preparing a high-performance Auxetic foam directly from polymer resin by a one-pot co 2 foaming process. ACS Applied Materials & Interfaces, 12(42), 48040–48048. https://doi.org/10.1021/acsami.0c15383
  • Fan, P., Chen, Y., Xiong, J., & Hu, H. (2022). In-plane mechanical properties of a novel hybrid Auxetic structure. Smart Materials and Structures, 31(7), 075003. https://doi.org/10.1088/1361-665X/ac68b5
  • Faraci, D., Driemeier, L., & Comi, C. (2021). Bending-dominated Auxetic materials for wearable protective devices against impact. Journal of Dynamic Behavior of Materials, 7(3), 425–435. https://doi.org/10.1007/s40870-020-00284-2
  • Farhangdoust, S., Aghaei, S. M., Amirahmadi, M., Pala, N., & Mehrabi, A. (2020). Auxetic MEMS sensor and Auxetic mems sensor. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, 11379(23), 36. https://doi.org/10.1117/12.2559330
  • Fernandes, R., & Gracias, D. H. (2012). Self-folding polymeric containers for encapsulation and delivery of drugs. Advanced Drug Delivery Reviews, 64(14), 1579–1589. https://doi.org/10.1016/j.addr.2012.02.012
  • Friis, E. A., Lakes, R. S., & Park, J. B. (1988). Negative Poisson’s ratio polymeric and metallic foams. Journal of Materials Science, 23(12), 4406–4414. https://doi.org/10.1007/BF00551939
  • Frolich, L. M., LaBarbera, M., & Stevens, W. P. (1994). Poisson’s ratio of a crossed Fibre sheath: The skin of aquatic salamanders. Journal of Zoology, 232(2), 231–252. https://doi.org/10.1111/j.1469-7998.1994.tb01571.x
  • Fu, M., Chen, Y., Zhang, W., & Zheng, B. (2016). Experimental and numerical analysis of a novel three-dimensional Auxetic metamaterial. Physica Status Solidi (b), 253(8), 1565–1575. https://doi.org/10.1002/pssb.201552769
  • Gaspar, N., Ren, X. J., Smith, C. W., Grima, J. N., & Evans, K. E. (2005). Novel honeycombs with Auxetic behaviour. Acta Materialia, 53(8), 2439–2445. https://doi.org/10.1016/j.actamat.2005.02.006
  • Gatt, R., Vella, M., Gatt, A., Zarb, F., Formosa, C., Azzopardi, K. M., Casha, A., Agius, T. P., Schembri-Wismayer, P., Attard, L., Chockalingam, N., & Grima, J. N. (2015). Acta biomaterialia negative Poisson’s ratios in tendons: An unexpected mechanical response. Acta Biomaterialia, 24, 201–208. https://doi.org/10.1016/j.actbio.2015.06.018
  • Ge, Z., & Hu, H. (2013). Innovative three-dimensional fabric structure with negative Poisson’s ratio for composite reinforcement. Textile Research Journal, 83(5), 543–550. https://doi.org/10.1177/0040517512454185
  • Ge, Z., Hu, H., & Liu, S. (2015). A novel plied yarn structure with negative Poisson’s ratio. The Journal of the Textile Institute, 107(5), 578–588. https://doi.org/10.1080/00405000.2015.1049069
  • Ge, Z., Hu, H., & Liu, Y. (2013). A finite element analysis of a 3d Auxetic textile structure for composite reinforcement. Smart Materials and Structures, 22(8), 084005. https://doi.org/10.1088/0964-1726/22/8/084005
  • Geng, L. C., Ruan, X. L., Wu, W. W., Xia, R., & Fang, D. N. (2019). Mechanical properties of selective laser sintering (SLS) additive manufactured chiral Auxetic cylindrical stent. Experimental Mechanics, 59(6), 913–925. https://doi.org/10.1007/s11340-019-00489-0
  • Glazzard, M., & Breedon, P. (2014). Weft-knitted Auxetic textile design. Physica Status Solidi (b), 251 (2), 267–272. https://doi.org/10.1002/pssb.201384240
  • Grima, J. N., Alderson, A., & Evans, K. E. (2005). Auxetic behaviour from rotating rigid units. Physica Status Solidi (b), 242(3), 561–575. https://doi.org/10.1002/pssb.200460376
  • Grima, J. N., & Evans, K. E. (2000). Auxetic behaviour from rotating squares. Journal of Materials Science Letters, 19(17), 1563–1565. https://doi.org/10.1023/A:1006781224002/METRICS
  • Grima, J. N., Zammit, V., Gatt, R., Alderson, A., & Evans, K. E. (2007). Auxetic behaviour from rotating semi-rigid units. Physica Status Solidi (b), 244(3), 866–882. https://doi.org/10.1002/pssb.200572706
  • Grima, J. N., Cauchi, R., Gatt, R., & Attard, D. (2013). Honeycomb composites with Auxetic out-of-plane characteristics. Composite Structures, 106, 150–159. https://doi.org/10.1016/j.compstruct.2013.06.009
  • Grima, J. N., Gatt, R., Alderson, A., & E. Evans, K. (2013). On the Auxetic properties of ‘rotating rectangles’ with different connectivity. Journal of the Physical Society of Japan, 74(10), 2866–2867. https://doi.org/10.1143/JPSJ.74.2866
  • Grima, J. N., Gatt, R., & Sandre Farrugia, P. (2008). On the properties of Auxetic meta-tetrachiral structures. Physica Status Solidi (B) Basic (b), 245(3), 511–520. https://doi.org/10.1002/pssb.200777704
  • Grima, J. N., Gatt, R., Zammit, V., Williams, J. J., Evans, K. E., Alderson, A., & Walton, R. I. (2007). Natrolite: A zeolite with negative Poisson’s ratios. Journal of Applied Physics, 101(8), 086102. https://doi.org/10.1063/1.2718879
  • Grima, J. N., Jackson, R., Alderson, A., & Evans, K. E. (2000). Do zeolites have negative Poisson’s ratios? Advanced Materials, 12(24), 1912–1918. https://doi.org/10.1002/1521-4095(200012)12:24<1912::AID-ADMA1912>3.0.CO;2-7
  • Grimmelsmann, N., Meissner, H., & Ehrmann, A. (2016). 3d printed Auxetic forms on knitted fabrics for adjustable permeability and mechanical properties. IOP Conference Series, 137, 012011. https://doi.org/10.1088/1757-899X/137/1/012011
  • Gu, L., Xu, Q., & Du, Z. (2021). Analysis of tensile behaviour of hyperelastic Auxetic cellular materials with re-entrant hexagonal cells. The Journal of the Textile Institute , 112(2), 173–186. https://doi.org/10.1080/00405000.2020.1729055
  • Gu, L., Xu, Q., Zheng, D., Zou, H., Liu, Z., & Du, Z. (2020). Analysis of the mechanical properties of double arrowhead Auxetic metamaterials under tension. Textile Research Journal, 90(21–22), 2411–2427. https://doi.org/10.1177/0040517520924850
  • Gunton, D. J., & Saunders, G. A. (1972). The Young’s modulus and Poisson’s ratio of arsenic, antimony and bismuth. Journal of Materials Science, 7(9), 1061–1068. https://doi.org/10.1007/BF00550070
  • Guo, M. F., Yang, H., Zhou, Y. M., & Ma, L. (2021). Mechanical properties of 3d hybrid double arrow-head structure with tunable Poisson’s ratio. Aerospace Science and Technology, 119, 107177. https://doi.org/10.1016/j.ast.2021.107177
  • Gupta, V., Bhattacharya, B., & Adhikari, S. (2022). Energy absorption of hourglass shaped lattice metastructures. Experimental Mechanics, 62(6), 943–952. https://doi.org/10.1007/s11340-022-00840-y
  • Haberman, M. R., Hook, D. T., Klatt, T. D., Hewage, T. A. M., Alderson, A., Alderson, K. L., & Scarpa, F. L. (2012). Ultrasonic characterization of polymeric composites containing Auxetic inclusions. The Journal of the Acoustical Society of America, 132(3_Supplement), 1961–1961. https://doi.org/10.1121/1.4755220
  • Hamzehei, R., Rezaei, S., Kadkhodapour, J., Anaraki, A. P., & Mahmoudi, A. (2020). 2d triangular anti-trichiral structures and Auxetic stents with symmetric shrinkage behaviour and high energy absorption. Mechanics of Materials, 142(December 2019), 103291. https://doi.org/10.1016/j.mechmat.2019.103291
  • He, C., Liu, P., & Griffin, A. C. (1998). Toward negative Poisson ratio polymers through molecular design. Macromolecules, 31(9), 3145–3147. https://doi.org/10.1021/ma970787m
  • He, C., Liu, P., Mcmullan, P., & Griffin, A. (2005). Toward molecular auxetics: Main chain liquid crystalline polymers consisting of laterally attached para-quaterphenyls. Physica Status Solidi (b), 242(3), 576–584. https://doi.org/10.1002/pssb.200460393
  • Hengsbach, S., & Lantada, A. D. (2014). Direct laser writing of Auxetic structures: Present capabilities and challenges. Smart Materials and Structures, 23(8), 085033. https://doi.org/10.1088/0964-1726/23/8/085033
  • Hu, H. (2017). Auxetic textile materials – A review. Journal of Textile Engineering & Fashion Technology, 1(1), 2. https://doi.org/10.15406/jteft.2017.01.00002
  • Hu, H., Wang, Z., & Liu, S. (2011). Development of Auxetic fabrics using flat knitting technology. Textile Research Journal, 81(14), 1493–1502. https://doi.org/10.1177/0040517511404594
  • Hu, H., Zhang, M., & Liu, Y. (2019a). Auxetic fabrics based on knitted structures. In Auxetic Textiles (pp. 141–189). Sawston, Cambridge: Woodhead Publishing.
  • Hu, H., Zhang, M., & Liu, Y. (2019b). Auxetic fabrics based on nonwoven structures. In Auxetic Textiles (pp. 247–264). Sawston, Cambridge: Woodhead Publishing.
  • Hu, H., Zhang, M., & Liu, Y. (2019c). Auxetic fabrics based on woven structures. In Auxetic Textiles (pp. 191–246). Sawston, Cambridge: Woodhead Publishing.
  • Hu, H., Zhang, M., & Liu, Y. (2019d). Auxetic Fibre–Reinforced Composites. Sawston, Cambridge: Woodhead Publishing.
  • Hu, H., Zhang, M., & Liu, Y. (2019e). Auxetic Fibres and Yarns. In Auxetic Textiles (pp. 93–140). Sawston, Cambridge: Woodhead Publishing.
  • Hu, H., Zhang, M., & Liu, Y. (2019f). Auxetic Structures and Mechanisms. Sawston, Cambridge: Woodhead Publishing.
  • Hur, J. M., Seo, D.-S., Kim, K., Lee, J. K., Lee, K. J., Kim, Y. Y., & Kim, D.-N. (2021). Harnessing distinct deformation modes of Auxetic patterns for stiffness design of tubular structures. Materials & Design, 198, 109376. https://doi.org/10.1016/j.matdes.2020.109376.
  • Ingrole, A., Hao, A., & Liang, R. (2017). Design and modelling of Auxetic and hybrid honeycomb structures for in-plane property enhancement. Materials & Design, 117, 72–83. https://doi.org/10.1016/j.matdes.2016.12.067
  • ISO 13753:1998. (1998). ISO 13753:1998 – Mechanical vibration and shock – Hand-arm vibration – Method for measuring the vibration transmissibility of resilient materials when loaded by the hand-arm system. Retrieved June 5, 2023, from https://www.iso.org/standard/20824.html.
  • Jiang, H., Zhang, Z., & Chen, Y. (2020). 3d printed tubular lattice metamaterials with engineered mechanical performance. Applied Physics Letters, 117(1), 932. https://doi.org/10.1063/5.0014932
  • Jiang, J. W., & Park, H. S. (2014). Negative Poisson’s ratio in single-layer black phosphorus. Nature Communications, 5(1), 4727. https://doi.org/10.1038/ncomms5727
  • Jiang, L., Gu, B., & Hu, H. (2016). Auxetic composite made with multilayer orthogonal structural reinforcement. Composite Structures, 135, 23–29. https://doi.org/10.1016/j.compstruct.2015.08.110
  • Jiang, N., & Hu, H. (2018). A study of tubular braided structure with negative Poisson’s ratio behaviour. Textile Research Journal, 88(24), 2810–2824. https://doi.org/10.1177/0040517517732086
  • Jiang, N., & Hu, H. (2019). Auxetic yarn made with circular braiding technology. Physica Status Solidi (B) Basic (b), 256(1), 1–12. https://doi.org/10.1002/pssb.201800168
  • Jiang, Y., & Li, Y. (2018). 3d printed Auxetic mechanical metamaterial with chiral cells and re-entrant cores. Scientific Reports, 8(1), 2397. https://doi.org/10.1038/s41598-018-20795-2
  • Jiao, Y., Li, C., Liu, L., Wang, F., Liu, X., Mao, J., & Wang, L. (2020). Construction and application of textile-based tissue engineering scaffolds: A review. Biomaterials Science, 8(13), 3574–3600. https://doi.org/10.1039/d0bm00157k
  • Kapnisi, M., Mansfield, C., Marijon, C., Guex, A. G., Perbellini, F., Bardi, I., Humphrey, E. J., Puetzer, J. L., Mawad, D., Koutsogeorgis, D. C., Stuckey, D. J., Terracciano, C. M., Harding, S. E., & Stevens, M. M. (2018). Auxetic cardiac patches with tunable mechanical and conductive properties toward treating myocardial infarction. Advanced Functional Materials, 28(21), 1800618. https://doi.org/10.1002/adfm.201800618
  • Khan, M. I., Akram, J., Umair, M., Hamdani, S. T., Shaker, K., Nawab, Y., & Zeeshan, M. (2019). Development of composites, reinforced by novel 3d woven orthogonal fabrics with enhanced auxeticity. Journal of Industrial Textiles, 49(5), 676–690. https://doi.org/10.1177/1528083718795912
  • Kim, J., Shin, D., Yoo, D-S., & Kim, K. (2017). Regularly configured structures with polygonal prisms for three-dimensional Auxetic behaviour. Proceedings. Mathematical, Physical, and Engineering Sciences, 473(2202), 20160926. https://doi.org/10.1098/rspa.2016.0926
  • Ko, J., Bhullar, S., Cho, Y., Lee, P. C., & Byung-Guk Jun, M. (2015). Design and fabrication of Auxetic stretchable force sensor for hand rehabilitation. Smart Materials and Structures, 24(7), 075027. https://doi.org/10.1088/0964-1726/24/7/075027
  • Kuribayashi, K., Tsuchiya, K., You, Z., Tomus, D., Umemoto, M., Ito, T., & Sasaki, M. (2006). Self-deployable origami stent grafts as a biomedical application of NI-rich TINI shape memory alloy foil. Materials Science and Engineering, 419(1–2), 131–137. https://doi.org/10.1016/j.msea.2005.12.016
  • Lakes, R. S., & Witt, R. (2002). Making and characterizing negative Poisson’s ratio materials. International Journal of Mechanical Engineering Education, 30(1), 50–58. https://doi.org/10.7227/IJMEE.30.1.5
  • Lakes, R. (1987). Foam structures with a negative Poisson’s ratio. Science, 235(4792), 1038–1040. https://doi.org/10.1126/science.235.4792.1038
  • Lantada, A. D., De Blas Romero, A., Schwentenwein, M., Jellinek, C., & Homa, J. (2016). Lithography-based ceramic manufacture (lCM) of Auxetic structures: Present capabilities and challenges. Smart Materials and Structures, 25(5), 054015. https://doi.org/10.1088/0964-1726/25/5/054015
  • Larsen, U. D., Signund, O., & Bouwsta, S. (1997). Design and fabrication of compliant micromechanisms and structures with negative Poisson’s ratio. Journal of Microelectromechanical Systems, 6(2), 99–106. https://doi.org/10.1109/84.585787
  • Lees, C., Vincent, J. F. V., & Hillerton, J. E. (1991). Poisson’s ratio in skin. Bio-Medical Materials and Engineering, 1(1), 19–23. https://doi.org/10.3233/BME-1991-1104
  • Leung, M. S. h., Yick, K. L., Sun, Y., Chow, L., & Ng, S. P. (2022). 3d printed Auxetic heel pads for patients with diabetic mellitus. Computers in Biology and Medicine, 146, 105582. https://doi.org/10.1016/j.compbiomed.2022.105582
  • Li, B., Liang, W., Zhang, L., Ren, F., & Xuan, F. (2022). Tpu/cnts flexible strain sensor with Auxetic structure via a novel hybrid manufacturing process of fused deposition modelling 3d printing and ultrasonic cavitation-enabled treatment. Sensors and Actuators A, 340, 113526. https://doi.org/10.1016/j.sna.2022.113526
  • Li, D., Liao, W., Dai, N., & Xie, Y. (2019). Anisotropic design and optimization of conformal gradient lattice structures. Computer-Aided Design, 119, 102787. https://doi.org/10.1016/j.cad.2019.102787
  • Li, Y. (1976). The anisotropic behaviour of Poisson’s ratio, Young’s modulus, and shear modulus in hexagonal materials. Physica Status Solidi (a), 38(1), 171–175. https://doi.org/10.1002/pssa.2210380119
  • Li, Y., Zhang, X., & Ying, B. A. (2019). On textile biomedical engineering. Science China Technological Sciences, 62(6), 945–957. https://doi.org/10.1007/s11431-018-9504-5
  • Li, Z., Liu, Y., Wang, Y., Lu, H., Lei, M., & Fu, Y. Q. (2021). 3d printing of Auxetic shape-memory metamaterial towards designable buckling. International Journal of Applied Mechanics, 13(01), 2150011. https://doi.org/10.1142/S1758825121500113
  • Lin, C., Zhang, L. J., Liu, Y. J., Liu, L. W., & Leng, J. S. (2020). 4d printing of personalized shape memory polymer vascular stents with negative Poisson’s ratio structure: A preliminary study. Science China Technological Sciences, 63(4), 578–588. https://doi.org/10.1007/s11431-019-1468-2
  • Linforth, S., Ngo, T., Tran, P., Ruan, D., & Odish, R. (2021). Investigation of the Auxetic oval structure for energy absorption through quasi-static and dynamic experiments. International Journal of Impact Engineering, 147, 103741. https://doi.org/10.1016/j.ijimpeng.2020.103741
  • Lira, C., Scarpa, F., & Rajasekaran, R. (2011). A gradient cellular core for aeroengine fan blades based on Auxetic configurations. Journal of Intelligent Material Systems and Structures, 22(9), 907–917. https://doi.org/10.1177/1045389X11414226
  • Lisiecki, J., Nowakowski, D., & Reymer, P. (2014). Fatigue properties of polyurethane foams, with special emphasis on Auxetic foams, used for helicopter pilot seat cushion inserts. Fatigue of Aircraft Structures, 2014(6), 72–78. https://doi.org/10.1515/fas-2014-0006
  • Liu, J., Yao, X., Wang, Z., Ye, J., Luan, C., He, Y., Lin, H., & Fu, J. (2021). A flexible porous chiral Auxetic tracheal stent with ciliated epithelium. Acta Biomaterialia, 124, 153–165. https://doi.org/10.1016/j.actbio.2021.01.044
  • Liu, Q. (2006). Literature review: Materials with negative Poisson’s ratios and potential applications to aerospace and defence. Victoria, Australia: DSTO Defence Science and Technology Organisation.
  • Liu, S., Du, Z., Liu, G., Pan, X., & Li, T. (2021). Study on the tensile behaviour of helical Auxetic yarns by modelling and mechanical analysis. Journal of the Textile Institute, 112(10), 1531–1537. https://doi.org/10.1080/00405000.2020.1827580
  • Liu, S., Pan, X., Zheng, D., Du, Z., Liu, G., & Yang, S. (2019). Study on the structure formation and heat treatment of helical Auxetic complex yarn. Textile Research Journal, 89(6), 1003–1012. https://doi.org/10.1177/0040517518760754
  • Liu, Y., & Hu, H. (2010). A review on Auxetic structures and polymeric materials. Scientific Research and Essays, 5(10), 1052–1063.
  • Lu, Z. -X., Liu, Q., & Yang, Z. -Y. (2011). Predictions of Young’s modulus and negative Poisson’s ratio of Auxetic foams. Physica Status Solidi (B) Basic (b), 248(1), 167–174. https://doi.org/10.1002/pssb.201046120
  • Luan, K., West, A., Denhartog, E., & Mccord, M. (2020). Auxetic deformation of the weft-knitted miura-ori fold. Textile Research Journal, 90(5–6), 617–630. https://doi.org/10.1177/0040517519877468
  • Ma, P., Chang, Y., & Jiang, G. (2016). Design and fabrication of Auxetic warp-knitted structures with a rotational hexagonal loop. Textile Research Journal, 86(20), 2151–2157. https://doi.org/10.1177/0040517515621132
  • Magalhães, R., Sohel, R., Fangueiro, R., Gonçalves, C., Nunes, P., & Dias, G.. 2018. Development and characterization of re-entrant Auxetic fibrous structures for application in ballistic composites. https://doi.org/10.5281/ZENODO.1474449
  • Magalhães, R., Subramani, P., Lisner, T., Rana, S., Ghiassi, B., Fangueiro, R., Oliveira, D. V., & Lourenco, P. B. (2016). Development, characterization and analysis of Auxetic structures from braided composites and study the influence of material and structural parameters. Composites Part A, 87, 86–97. https://doi.org/10.1016/j.compositesa.2016.04.020
  • Mardling, P., Alderson, A., Jordan-Mahy, N., & Le Maitre, C. L. (2020). The use of Auxetic materials in tissue engineering. Biomaterials Science, 8(8), 2074–2083. https://doi.org/10.1039/c9bm01928f
  • Martz, E., Lakes, R., Goel, V., & Park, J. (2005). Design of an artificial intervertebral disc exhibiting a negative Poisson’s ratio. Cellular Polymers, 24(3), 127–138. https://doi.org/10.1177/026248930502400302
  • Masters, I. G., & Evans, K. E. (1997). Models for the elastic deformation of honeycombs. Composite Structures, 35(4), 403–422. https://doi.org/10.1016/S0263-8223(96)00054-2
  • Menner, W. A. (1995). Introduction to modelling and simulation. Johns Hopkins Apl Technical Digest, 21(3), 327–336.
  • Miki, M., & Murotsu, Y. (1989). Peculiar behaviour of the Poisson’s ratio of laminated fibrous composites. JSME International Journal, Series 1, 32(1), 67. https://doi.org/10.1299/jsmea1988.32.1_67
  • Miller, W., Hook, P. B., Smith, C. W., Wang, X., & Evans, K. E. (2009). The manufacture and characterisation of a Novel, low modulus, negative Poisson’s ratio composite. Composites Science and Technology, 69(5), 651–655. https://doi.org/10.1016/j.compscitech.2008.12.016
  • Miller, W., Ren, Z., Smith, C. W., & Evans, K. E. (2012). A negative Poisson’s ratio carbon fibre composite using a negative Poisson’s ratio yarn reinforcement. Composites Science and Technology, 72(7), 761–766. https://doi.org/10.1016/j.compscitech.2012.01.025
  • Miller, W., Smith, C. W., Scarpa, F., & Evans, K. E. (2010). Flatwise buckling optimization of hexachiral and tetrachiral honeycombs. Composites Science and Technology, 70(7), 1049–1056. https://doi.org/10.1016/j.compscitech.2009.10.022
  • Milton, G. W. (1992). Composite materials with Poisson’s ratios close to – 1. Journal of the Mechanics and Physics of Solids, 40(5), 1105–1137. https://doi.org/10.1016/0022-5096(92)90063-8
  • Mir, M., Najabat Ali, M., Sami, J., & Ansari, U. (2014). Review of mechanics and applications of Auxetic structures. Advances in Materials Science and Engineering, 2014, 1–17. https://doi.org/10.1155/2014/753496
  • Mizzi, L., Salvati, E., Spaggiari, A., Tan, J. C., & Korsunsky, A. M. (2020a). 2d Auxetic metamaterials with tuneable micro-/nanoscale apertures. Applied Materials Today, 20, 100780. https://doi.org/10.1016/j.apmt.2020.100780
  • Mizzi, L., Salvati, E., Spaggiari, A., Tan, J. C., & Korsunsky, A. M. (2020b). Highly stretchable two-dimensional Auxetic metamaterial sheets fabricated via direct-laser cutting. International Journal of Mechanical Sciences, 167, 105242. https://doi.org/10.1016/j.ijmecsci.2019.105242
  • Mizzi, L., & Spaggiari, A. (2020). Lightweight mechanical metamaterials designed using hierarchical truss elements. Smart Materials and Structures, 29(10), 105036. https://doi.org/10.1088/1361-665X/aba53c
  • Mohsenizadeh, S., Alipour, R., Shokri Rad, M., Farokhi Nejad, A., & Ahmad, Z. (2015). Crashworthiness assessment of Auxetic foam-filled tube under quasi-static axial loading. Materials & Design , 88, 258–268. https://doi.org/10.1016/j.matdes.2015.08.152
  • Moroney, C., Alderson, A., Allen, T., Sanami, M., & Venkatraman, P. (2018). The application of Auxetic material for protective sports apparel. Proceedings, 2, 251.
  • Mukhopadhyay, T., & Adhikari, S. (2016). Effective in-plane elastic properties of Auxetic honeycombs with spatial irregularity. Mechanics of Materials, 95, 204–222. https://doi.org/10.1016/j.mechmat.2016.01.009
  • Muslija, A., & Díaz Lantada, A. (2014). Deep reactive ion etching of Auxetic structures: Present capabilities and challenges. Smart Materials and Structures, 23(8), 087001. https://doi.org/10.1088/0964-1726/23/8/087001
  • Nakamura, K., Wada, M., Kuga, S., & Okano, T. (2004). Poisson’s ratio of cellulose iα and cellulose ii. Journal of Polymer Science Part B, 42(7), 1206–1211. https://doi.org/10.1002/polb.10771
  • Narojczyk, J. W., & Wojciechowski, K. W. (2019). Poisson’s ratio of the f.C.C. hard sphere crystals with periodically stacked (001)-nanolayers of hard spheres of another diameter. Materials , 12(5), 700. https://doi.org/10.3390/MA12050700
  • Nazir, M. U., Shaker, K., Hussain, R., & Nawab, Y. (2019). Performance of novel Auxetic woven fabrics produced using helical Auxetic yarn. Materials Research Express, 6(8), 085703. https://doi.org/10.1088/2053-1591/ab1a7e
  • Ng, W., Sum, H. & Hu, H. (2017). Tensile and deformation behaviour of Auxetic plied yarns. Basic Solid State Physics, 254(12), 1600790. https://doi.org/10.1002/pssb.201600790
  • Ng, W. S., & Hu, H. (2018). Woven fabrics made of Auxetic plied yarns. Polymers, 10(2), 226. https://doi.org/10.3390/polym10020226
  • Novak, N., Dobnik Dubrovski, P., Borovinšek, M., Vesenjak, M., & Ren, Z. (2020). Deformation behaviour of advanced textile composites with Auxetic structure. Composite Structures, 252, 112761. https://doi.org/10.1016/j.compstruct.2020.112761
  • Novak, N., Krstulović-Opara, L., Ren, Z., & Vesenjak, M. (2020). Compression and shear behaviour of graded chiral Auxetic structures. Mechanics of Materials, 148, 103524. https://doi.org/10.1016/j.mechmat.2020.103524
  • Panico, M., Langella, C., & Santulli, C. (2017). Development of a biomedical neckbrace through tailored Auxetic shapes. Italian Journal of Science & Engineering, 1(3), 105–117. https://doi.org/10.28991/ijse-01113
  • Park, H. S., & Kim, S. Y. (2017). A perspective on Auxetic nanomaterials. Nano Convergence, 4(1), 10. https://doi.org/10.1186/s40580-017-0104-3
  • Park, Y. J., & Kim, J. K. (2013). The effect of negative Poisson ‘ s ratio polyurethane scaffolds for articular cartilage tissue engineering applications. Advances in Materials Science and Engineering, 2013, 1–5. https://doi.org/10.1155/2013/853289
  • Paxton, N. C., Daley, R., Forrestal, D. P., Allenby, M. C., & Woodruff, M. A. (2020). Auxetic tubular scaffolds via melt electrowriting. Materials & Design, 193, 108787. https://doi.org/10.1016/j.matdes.2020.108787
  • Pickles, A. P., Alderson, K. L., & Evans, K. E. (1996). The effects of powder morphology on the processing of Auxetic polypropylene (pp of negative Poisson’s ratio). Polymer Engineering & Science, 36(5), 636–642. https://doi.org/10.1002/pen.10451
  • Pickles, A. P., Webber, R. S., Alderson, K. L., Neale, P. J., & Evans, K. E. (1995). The effect of the processing parameters on the fabrication of Auxetic polyethylene part I the effect of compaction conditions. Journal of Materials Science, 30(16), 4059–4068. https://doi.org/10.1007/BF00360709
  • Prawoto, Y. (2012). Seeing Auxetic materials from the mechanics point of view: A structural review on the negative Poisson ‘ s ratio. Computational Materials Science, 58, 140–153. https://doi.org/10.1016/j.commatsci.2012.02.012
  • Qi, D., Yu, H., Hu, W., He, C., Wu, W., & Ma, Y. (2019). Bandgap and wave attenuation mechanisms of innovative reentrant and anti-chiral hybrid Auxetic metastructure. Extreme Mechanics Letters, 28, 58–68. https://doi.org/10.1016/j.eml.2019.02.005
  • Qi, D., Zhang, P., Wu, W., Xin, K., Liao, H., Li, Y., Xiao, D., & Xia, R. (2020). Innovative 3d chiral metamaterials under large deformation: Theoretical and experimental analysis. International Journal of Solids and Structures, 202, 787–797. https://doi.org/10.1016/j.ijsolstr.2020.06.047
  • Quan, C., Han, B., Hou, Z., Zhang, Q., Tian, X., & Lu, T. J. (2020). 3d printed continuous fiber reinforced composite Auxetic honeycomb structures. Composites Part B, 187, 107858. https://doi.org/10.1016/j.compositesb.2020.107858
  • Rabbi, M. F., Chalivendra, V., & Kim, Y. (2018). Dynamic constitutive response of novel Auxetic kevlar®/epoxy composites. Composite Structures, 195, 1–13. https://doi.org/10.1016/j.compstruct.2018.04.056
  • Rafsanjani, A., & Pasini, D. (2016). Bistable Auxetic mechanical metamaterials inspired by ancient geometric motifs. Extreme Mechanics Letters, 9, 291–296. https://doi.org/10.1016/j.eml.2016.09.001
  • Rana, S., & Fangueiro, R. (2016). Advanced composite materials for aerospace engineering. Woodhead Publishing.
  • Ravirala, N., Alderson, A., & Alderson, K. L. (2007). Interlocking hexagons model for Auxetic behaviour. Journal of Materials Science, 42(17), 7433–7445. https://doi.org/10.1007/s10853-007-1583-0
  • Ravirala, N., Alderson, A., Alderson, K. L., & Davies, P. J. (2005). Expanding the range of Auxetic polymeric products using a novel melt-spinning route. Physica Status Solidi (B) Basic (b), 242(3), 653–664. https://doi.org/10.1002/pssb.200460384
  • Ravirala, N., Alderson, K. L., Davies, P. J., Simkins, V. R., & Alderson, A. (2006). Negative Poisson’s ratio polyester fibers. Textile Research Journal, 76(7), 540–546. https://doi.org/10.1177/0040517506065255
  • Ren, X., Das, R., Tran, P., Ngo, T. D., & Xie, Y. M. (2018). Auxetic metamaterials and structures: A review. Smart Materials and Structures, 27, 023001.
  • Ruzzene, M., & Scarpa, F. (2005). Directional and band-gap behaviour of periodic Auxetic lattices. Physica Status Solidi (b), 242(3), 665–680. https://doi.org/10.1002/pssb.200460385
  • Scarpa, F., Giacomin, J., Zhang, Y., & Pastorino, P. (2005). Mechanical performance of Auxetic polyurethane foam for antivibration glove applications. Cellular Polymers, 24(5), 253–268. https://doi.org/10.1177/026248930502400501
  • Scarpa, F., Pastorino, P., Garelli, A., Patsias, S., & Ruzzene, M. (2005). Auxetic compliant flexible PU foams: Static and dynamic properties. Physica Status Solidi (B) Basic (b), 242(3), 681–694. https://doi.org/10.1002/pssb.200460386
  • Scarpa, F. (2008). Auxetic materials for bioprostheses. IEEE Signal Processing Magazine, 25(5), 128–126. https://doi.org/10.1109/MSP.2008.926663
  • Scarpa, F. L., Dallocchio, F., & Ruzzene, M. (2003). Identification of acoustic properties of Auxetic foams. Smart Structures and Materials, 5052, 468–474. https://doi.org/10.1117/12.487559
  • Schenk, M., & Guest, S. D. (2013). Geometry of miura-folded metamaterials. Proceedings of the National Academy of Sciences of the United States of America, 110(9), 3276–3281. https://doi.org/10.1073/pnas.1217998110
  • Shahrubudin, N., Lee, T. C., & Ramlan, R. (2019). An overview on 3d printing technology: Technological, materials, and applications. Procedia Manufacturing, 35, 1286–1296. https://doi.org/10.1016/j.promfg.2019.06.089
  • Sharma, S., Kushawah, D., & Rawal, A. (2019). Designing nonwoven Auxetic metamaterials with spatially textured functionalities. Materials Letters, 241, 214–218. https://doi.org/10.1016/j.matlet.2019.01.038
  • Shen, Y., & Adanur, S. (2019). Mechanical analysis of the Auxetic behaviour of novel braided tubular structures by the finite element method. Textile Research Journal, 89(23–24), 5187–5197. https://doi.org/10.1177/0040517519851840
  • Shukla, S., & Behera, B. K. (2022a). Auxetic fibrous materials and structures in medical engineering – a review. Journal of the Textile Institute, 2022, 549. https://doi.org/10.1080/00405000.2022.2116549
  • Shukla, S., & Behera, B. K. (2022b). Auxetic fibrous structures and their composites: A review. Composite Structures, 290, 115530. https://doi.org/10.1016/j.compstruct.2022.115530
  • Shukla, S., & Behera, B. K. (2023). Comparative analysis of Poisson’s ratio of 2d woven constructions and their composites produced from different Auxetic geometries. Polymer Composites, 44(3), 1636–1647. https://doi.org/10.1002/pc.27193
  • Shukla, S., Jain, S., & Behera, B. K. (2022). Design and development of 2d woven Auxetic fabric based on double arrow geometry using semi-empirical model. Journal of Material Sciences and Engineering, 11(3). https://doi.org/10.37421/2169-0022.2022.11.22
  • Shukla, S., Kumar Behera, B., Kumar Mishra, R., Tichý, M., Kolář, V., & Müller, M. (2021). Modelling of Auxetic woven structures for composite reinforcement. Textiles, 2(1), 1–15. https://doi.org/10.3390/textiles2010001
  • Simkins, V. R., Ravirala, N., Davies, P. J., Alderson, A., & Alderson, K. L. (2008). An experimental study of thermal post-production processing of Auxetic polypropylene fibres. Physica Status Solidi (B) Basic (b), 245(3), 598–605. https://doi.org/10.1002/pssb.200777717
  • Sloan, M. R., Wright, J. R., & Evans, K. E. (2011). The helical Auxetic yarn – A novel structure for composites and textiles; geometry, manufacture and mechanical properties. Mechanics of Materials, 43(9), 476–486. https://doi.org/10.1016/j.mechmat.2011.05.003
  • Smith, C. W., Grima, J. N., & Evans, K. E. (2000). A novel mechanism for generating Auxetic behaviour in reticulated foams: Missing rib foam model. Acta Materialia, 48(17), 4349–4356. https://doi.org/10.1016/S1359-6454(00)00269-X
  • Soman, P., Fozdar, D. Y., Lee, J. W., Phadke, A., Varghese, S., & Chen, S. (2012). Paper a three-dimensional polymer scaffolding material exhibiting a zero Poisson’s. Soft Matter, 8(18), 4946–4951. https://doi.org/10.1039/c2sm07354d
  • Soman, P., Lee, J. W., Phadke, A., Varghese, S., & Chen, S. (2012). Acta biomaterialia spatial tuning of negative and positive Poisson ‘ s ratio in a multi-layer scaffold. Acta Biomaterialia, 8(7), 2587–2594. https://doi.org/10.1016/j.actbio.2012.03.035
  • Steffens, F., & Oliveira, F. R. (2020). Energy absorption from composite reinforced with high performance Auxetic textile structure. Journal of Composite Materials, 55(7), 1003–1013. https://doi.org/10.1177/0021998320964552
  • Steffens, F., Rana, S., & Fangueiro, R. (2016). Development of novel Auxetic textile structures using high performance fibres. Materials & Design, 106, 81–89. https://doi.org/10.1016/j.matdes.2016.05.063
  • Stott, P. J., Mitchell, R., Alderson, K., & Alderson, A. (2001). Auxetic materials – Applications. 1–6. https://www.azom.com/article.aspx?ArticleID=168
  • Subic, E. A., Scheinowitz, M., Fuss, F. K., Shepherd, T., Driscoll, H., Winwood, K., Venkatraman, P., & Allen, T. (2017). “Son, A., & Allen, T. (2017)” Review of Modelling and Additive Manufacturing of Auxetic Materials for Application in Sport, 8th Asia-Pacific Congress on Sports Technology. In 8th Asia-Pacific Congress on Sports Technology Downloaded from: Http://E-s. (October).
  • Subramani, P., Rana, S., Oliveira, D. V., & Fangueiro, R. (2014). Development of novel Auxetic structures from braided composite rods for structural applications. ECCM16 – 16th European Conference On Composite Material, 22–26.
  • Subramani, P., Rana, S., Oliveira, D. V., Fangueiro, R., & Xavier, J. (2014). Development of novel Auxetic structures based on braided composites. Materials & Design, 61, 286–295. https://doi.org/10.1016/j.matdes.2014.04.067
  • Sun, Y., Xu, W., Wei, W., & Ma, P. (2019). Stab-resistance of Auxetic weft-knitted fabric with kevlar® fibers at quasi-static loading. Journal of Industrial Textiles, 50(9), 1384–1396. https://doi.org/10.1177/1528083719865044
  • Szurgott, P., Klasztorny, M., Niezgoda, T., Miedzinska, D., & Gieleta, R. (2017). Dynamic tests for energy absorption by selected Auxetic fabrics. Journal of Engineered Fibers and Fabrics, 12(4), 402–412. https://doi.org/10.1177/155892501701200402
  • Tang, Y., & Yin, J. (2017). Design of cut unit geometry in hierarchical kirigami-based Auxetic metamaterials for high stretchability and compressibility. Extreme Mechanics Letters, 12, 77–85. https://doi.org/10.1016/j.eml.2016.07.005
  • Theocaris, P. S., Stavroulakis, G. E., & Panagiotopoulos, P. D. (1997). Negative Poisson‘s ratios in composites with star-shaped inclusions: A numerical homogenization approach. Archive of Applied Mechanics, 67(200), 274–286.
  • Tretiakov, K., & Wojciechowski, K. (2012). Elasticity of two-dimensional crystals of polydisperse hard disks near close packing: Surprising behaviour of the Poisson’s ratio. The Journal of Chemical Physics, 136(20), 204506. https://doi.org/10.1063/1.4722100
  • Ugbolue, S. C., Kim, Y. K., Warner, S. B., Fan, Q., Yang, C.-L., Kyzymchuk, O., & Feng, Y. (2010). The formation and performance of Auxetic textiles. Part I: Theoretical and technical considerations. Journal of the Textile Institute, 101(7), 660–667. https://doi.org/10.1080/00405000902733790
  • Ugbolue, S. C., Kim, Y. K., Warner, S. B., Fan, Q., Yang, C. -L., Kyzymchuk, O., & Lord, J. (2011). The formation and performance of Auxetic textiles. Part II: Geometry and structural properties. Journal of the Textile Institute, 102(5), 424–433. https://doi.org/10.1080/00405000.2010.486183
  • Uzun, M. (2012). Mechanical properties of Auxetic and conventional polypropylene random short fibre reinforced composites. Fibres and Textiles in Eastern Europe, 5(94), 70–74.
  • Uzun, M., & Patel, I. (2010). Tribological properties of Auxetic and conventional polypropylene weft knitted fabrics. Archives of Materials Science and Engineering, 44, 2.
  • Valente, J., Plum, E., Youngs, I. J., & Zheludev, N. I. (2016). Nano- and micro-Auxetic plasmonic materials. Advanced Materials, 28(26), 5176–5180. https://doi.org/10.1002/ADMA.201600088
  • Verma, P., Shofner, M. L., Lin, A., Wagner, K. B., & Griffin, A. C. (2015). Inducing out-of-plane Auxetic behaviour in needle-punched nonwovens. Physica Status Solidi (B) Basic (b), 252(7), 1455–1464. https://doi.org/10.1002/pssb.201552036
  • Verma, P., Shofner, M. L., Lin, A., Wagner, K. B., & Griffin, A. C. (2016). Induction of Auxetic response in needle-punched nonwovens: Effects of temperature, pressure, and time. Physica Status Solidi (B) Basic (b), 253(7), 1270–1278. https://doi.org/10.1002/pssb.201600072
  • Veronda, D. R., & Westmann, R. A. (1970). Mechanical characterization of skin – Finite deformations. Journal of Biomechanics, 3(1), 111–124. https://doi.org/10.1016/0021-9290(70)90055-2
  • Vysanska, M., & Vintrova, P. (2013). Auxetic woven fabrics-pores’ parameters observation. Journal of Donghua University, 30, 416–420.
  • Wan, H., Ohtaki, H., Kotosaka, S., & Hu, G. (2004). A study of negative Poisson’s ratios in Auxetic honeycombs based on a large deflection model. European Journal of Mechanics - A/Solids, 23(1), 95–106. https://doi.org/10.1016/j.euromechsol.2003.10.006
  • Wang, H., Lu, Z., Yang, Z., & Li, X. (2019). A novel re-entrant Auxetic honeycomb with enhanced in-plane impact resistance. Composite Structures, 208(October 2018), 758–770. https://doi.org/10.1016/j.compstruct.2018.10.024
  • Wang, Y., Liu, Y., Luo, S., Chen, C., & Jin, L. (2018). The pressure comfort sensation of female’s body parts caused by compression garment. Advances in Intelligent Systems and Computing, 608, 412.
  • Wang, Y.-C., Lai, H.-W., & Ren, X. J. (2020). Enhanced Auxetic and viscoelastic properties of filled reentrant honeycomb. Physica Status Solidi (b), 257(10), 1900184. https://doi.org/10.1002/pssb.201900184
  • Wang, Z., & Hu, H. (2014). 3d Auxetic warp-knitted spacer fabrics. Physica Status Solidi (b), 251 (2), 281–288. https://doi.org/10.1002/pssb.201384239
  • Wang, Z., & Hu, H. (2014). Auxetic materials and their potential applications in textiles. Textile Research Journal, 84(15), 1600–1611. https://doi.org/10.1177/0040517512449051
  • Wang, Z., & Hu, H. (2015). A finite element analysis of an Auxetic warp-knitted spacer fabric structure. Textile Research Journal, 85(4), 404–415. https://doi.org/10.1177/0040517514547213
  • Wang, Z., & Hu, H. (2017). Tensile and forming properties of Auxetic warp-knitted spacer fabrics. Textile Research Journal, 87(16), 1925–1937. https://doi.org/10.1177/0040517516660889
  • Wang, Z., Hu, H., & Xiao, X. (2014). Deformation behaviours of three-dimensional Auxetic spacer fabrics. Textile Research Journal, 84(13), 1361–1372. https://doi.org/10.1177/0040517514521120
  • Webber, R. S., Alderson, K. L., & Evans, K. E. (2008). A novel fabrication route for Auxetic polyethylene, part 2: Mechanical properties. Polymer Engineering & Science, 48(7), 1351–1358. https://doi.org/10.1002/pen.21110
  • Williams, J. L., & Lewis, J. L. (1982). Properties and an anisotropic model of cancellous bone from the proximal tibial epiphysis. Journal of Biomechanical Engineering, 104(1), 50–56. https://doi.org/10.1115/1.3138303
  • Wright, J. R., Sloan, M. R., and., & Evans, K. E. (2010). Tensile properties of helical Auxetic structures: A numerical study. Journal of Applied Physics, 108(4), 44905. https://doi.org/10.1063/1.3465378
  • Wright, J. R., Burns, M. K., James, E., Sloan, M. R., & Evans, K. E. (2012). On the design and characterisation of low-stiffness Auxetic yarns and fabrics. Textile Research Journal, 82(7), 645–654. https://doi.org/10.1177/0040517512436824
  • Wu, W., Song, X., Liang, J., Xia, R., Qian, G., & Fang, D. (2018). Mechanical properties of anti-tetrachiral Auxetic stents. Composite Structures, 185(November 2017), 381–392. https://doi.org/10.1016/j.compstruct.2017.11.048
  • Wu, Z., Zhao, J., Wu, W., Wang, P., Wang, B., Li, G., & Zhang, S. (2018). Radial compressive property and the proof-of-concept study for realizing self-expansion of 3d printing polylactic acid vascular stents with negative Poisson’s ratio structure. Materials, 11(8), 1357. https://doi.org/10.3390/ma11081357
  • Xu, W., Sun, Y., Lin, H., Wei, C., Ma, P., & Xia, F. (2020). Preparation of soft composite reinforced with Auxetic warp-knitted spacer fabric for stab resistance. Textile Research Journal, 90(3-4), 323–332. https://doi.org/10.1177/0040517519866938
  • Xu, W., Sun, Y., Raji, K. R., & Ma, P. (2019). Design and fabrication of novel Auxetic weft-knitted fabrics with kevlar yarns. The Journal of the Textile Institute, 110(9), 1257–1262. https://doi.org/10.1080/00405000.2018.1557359
  • Yan, Y., Li, Y., Song, L., Zeng, C., & Li, Y. (2017). Acta biomaterialia pluripotent stem cell expansion and neural differentiation in 3-d scaffolds of tunable Poisson’s ratio. Acta Biomaterialia, 49, 192–203. https://doi.org/10.1016/j.actbio.2016.11.025
  • Yang, S., Chalivendra, V. B., & Kim, Y. K. (n.d.). Impact behaviour of Auxetic kevlar®/epoxy composites impact behaviour of Auxetic kevlar®/epoxy composites. Materials Science and Engineering, 254, 042031.
  • Yang, S., Chalivendra, V. B., & Kim, Y. K. (2017). Fracture and impact characterization of novel Auxetic kevlar®/epoxy laminated composites. Composite Structures, 168, 120–129. https://doi.org/10.1016/j.compstruct.2017.02.034
  • Yang, S., Qi, C., Wang, D., Gao, R., Hu, H., & Shu, J. (2013). A comparative study of ballistic resistance of sandwich panels with aluminum foam and Auxetic honeycomb cores. Advances in Mechanical Engineering, 5, 589216. https://doi.org/10.1155/2013/589216
  • Yang, W., Li, Z. M., Shi, W., Xie, B. H., & Yang, M. B. (2004). On Auxetic materials: review. Journal of Materials Science., 39(10), 3269–3279. https://doi.org/10.1023/B:JMSC.0000026928.93231.e0
  • Yao, Y. T., Alderson, K. L., & Alderson, A. (2016). Modelling of negative Poisson’s ratio (auxetic) crystalline cellulose iβ. Cellulose, 23(6), 3429–3448. https://doi.org/10.1007/S10570-016-1069-9/FIGURES/10
  • Yeganeh-Haeri, A., Weidner, D. J., & Parise, J. B. (1992). Elasticity of α-cristobalite: a silicon dioxide with a negative Poisson’s ratio. Science, 257(5070), 650–652. https://doi.org/10.1126/science.257.5070.650
  • Yu, L., Tan, H., & Zhou, Z. (2020). Mechanical properties of 3d Auxetic closed-cell cellular structures. International Journal of Mechanical Sciences, 177(August), 105596. https://doi.org/10.1016/j.ijmecsci.2020.105596
  • Yuping, C. (2023). Study of Auxetic fabrics based on rotating square geometry.
  • Zahra, T. (2019). Role of Auxetic composites in protection of building materials and structures. In 9th International Advances in Applied Physics & Materials Science Congress.
  • Zahra, T. (2021). Behaviour of 3d printed re-entrant chiral Auxetic (rca) geometries under in-plane and out-of-plane loadings. Smart Materials and Structures, 30(11), 115011. https://doi.org/10.1088/1361-665X/ac2811
  • Zeng, J., Cao, H., & Hu, H. (2019). Finite element simulation of an Auxetic plied yarn structure. Textile Research Journal, 89(16), 3394–3400. https://doi.org/10.1177/0040517518813659
  • Zeng, J., & Hu, H. (2018). A theoretical analysis of deformation behaviour of Auxetic plied yarn structure. Smart Materials and Structures, 27(7), 075003. https://doi.org/10.1088/1361-665X/aac23a
  • Zeng, J., Hu, H., & Zhou, L. (2017). A study on negative Poisson’s ratio effect of 3d Auxetic orthogonal textile composites under compression. Smart Materials and Structures, 26, 065014.
  • Zhan, C., Li, M., McCoy, R., Zhao, L., & Lu, W. (2022). 3d printed hierarchical re-entrant honeycombs: Enhanced mechanical properties and the underlying deformation mechanisms. Composite Structures, 290, 115550. https://doi.org/10.1016/j.compstruct.2022.115550
  • Zhang, G. H., Ghita, O., & Evans, K. E. (2015). The fabrication and mechanical properties of a novel 3-component Auxetic structure for composites. Composites Science and Technology, 117, 257–267. https://doi.org/10.1016/j.compscitech.2015.06.012
  • Zhang, G., Ghita, O., Lin, C., & Evans, K. E. (2016). Varying the performance of helical Auxetic yarns by altering component properties and geometry. Composite Structures, 140, 369–377. https://doi.org/10.1016/j.compstruct.2015.12.032
  • Zhang, G., Ghita, O. R., & Evans, K. E. (2016). Dynamic thermo-mechanical and impact properties of helical Auxetic yarns. Composites Part B, 99, 494–505. https://doi.org/10.1016/j.compositesb.2016.05.059
  • Zhang, G., Ghita, O. R., Lin, C., & Evans, K. E. (2018). Large-scale manufacturing of helical Auxetic yarns using a novel semi-coextrusion process. Textile Research Journal, 88(22), 2590–2601. https://doi.org/10.1177/0040517517725125
  • Zhang, R., Yeh, H.-L., & Yeh, H.-Y. (1999). Discussion of negative Poisson’s ratio design for composites. Journal of Reinforced Plastics and Composites, 18(17), 1546–1556. https://doi.org/10.1177/073168449901801701
  • Zhang, Z., Hu, H., Liu, S., & Xu, B. (2013). Study of an Auxetic structure made of tubes and corrugated sheets. Physica Status Solidi (b), 250(10), 1996–2001. https://doi.org/10.1002/pssb.201248349
  • Zhao, S., Hu, H., Kamrul, H., Chang, Y., & Zhang, M. (2020). Development of Auxetic warp knitted fabrics based on reentrant geometry. Textile Research Journal, 90(3–4), 344–356. https://doi.org/10.1177/0040517519866931
  • Zhou, L., Jiang, L., & Hu, H. (2016). Auxetic composites made of 3d textile structure and polyurethane foam. Physica Status Solidi (b), 253 (7), 1331–1341. https://doi.org/10.1002/pssb.201552768
  • Zmuda, C. J. (2017). Digital wpi major qualifying projects (all years) major qualifying projects design of structural composite with Auxetic behaviour (project thesis). https://digitalcommons.wpi.edu/mqp-all/296
  • Zulifqar, A., & Hu, H. (2019a). Development of bi-stretch Auxetic woven fabrics based on re-entrant hexagonal geometry. Physica Status Solidi (b), 256(1), 1–8. https://doi.org/10.1002/pssb.201800172
  • Zulifqar, A., & Hu, H. (2019b). Geometrical analysis of bi-stretch Auxetic woven fabric based on re-entrant hexagonal geometry. Textile Research Journal, 89(21–22), 4476–4490. https://doi.org/10.1177/0040517519836936
  • Zulifqar, A., Hua, T., & Hu, H. (2018). Development of uni-stretch woven fabrics with zero and negative Poisson‘s ratio. Textile Research Journal, 88(18), 2076–2092. https://doi.org/10.1177/0040517517715095

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.