Publication Cover
Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility
Volume 53, 2015 - Issue 6
559
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Dynamic assessment of existing soft catenary systems using modal analysis to explore higher train velocities: a case study of a Norwegian contact line system

&
Pages 756-774 | Received 10 Sep 2014, Accepted 25 Jan 2015, Published online: 26 Feb 2015

References

  • Kiessling F. Contact lines for electric railways: planning, design, implementation, maintenance. 2nd ed. Erlangen: Publicis Publishing; 2009.
  • Poetsch G, Evans J, Meisinger R, Kortum W, Baldauf W, Veitl A, Wallaschek J. Pantograph/catenary dynamics and control. Veh Syst Dyn. 1997;28:159–195. doi: 10.1080/00423119708969353
  • Ambrósio J, Pombo J, Pereira M, Antunes P, Mósca A. Recent development in pantograph-catenary interaction modelling and analysis. Int J Railway Technol. 2012;1:249–278. doi: 10.4203/ijrt.1.1.12
  • Lee J, Kim Y, Paik J, Park T. Performance evaluation and design optimization using differential evolutionary algorithm of the pantograph for the high-speed train. J Mech Sci Technol. 2012;26:3253–3260. doi: 10.1007/s12206-012-0833-5
  • Kim J, Chae H, Park B, Lee S, Han S, Jang J. State sensitivity analysis of the pantograph system for a high-speed rail vehicle considering span length and static uplift force. J Sound Vib. 2007;303:405–427. doi: 10.1016/j.jsv.2006.06.073
  • Park T, Han C, Jang J. Dynamic sensitivity analysis for the pantograph of a high-speed rail vehicle. J Sound Vib. 2003;266:235–260. doi: 10.1016/S0022-460X(02)01280-4
  • Ding T, Chen GX, Bu J, Zhang WH. Effect of temperature and arc discharge on friction and wear behaviours of carbon strip/copper contact wire in pantograph–catenary systems. Wear. 2011;271:1629–1636. doi: 10.1016/j.wear.2010.12.031
  • Pombo J, Ambrósio J, Pereira M, Rauter F, Collina A, Facchinetti A. Influence of the aerodynamic forces on the pantograph–catenary system for high-speed trains. Veh Syst Dyn. 2009;47:1327–1347. doi: 10.1080/00423110802613402
  • Bocciolone M, Resta F, Rocchi D, Tosi A, Collina A. Pantograph aerodynamic effects on the pantograph–catenary interaction. Veh Syst Dyn. 2006;44:560–570. doi: 10.1080/00423110600875484
  • Drugge L. Modelling and simulation of pantograph-catenary dynamics [Doctoral thesis]. Luleå: Luleå University of Technology; 2000.
  • Bucca G, Carnevale M, Collina A, Facchinetti A, Drugge L, Jönsson PA. Adoption of different pantographs' preloads to improve multiple collection and speed up existing lines. Veh Syst Dyn. 2012;50:403–418. doi: 10.1080/00423114.2012.665165
  • Thoresen TE. System for measuring the uplift from all pantographs passing the installed system. In: Product information. Oslo, Norway; 2008.
  • Drugge L, Larsson T, Stensson A. Modelling and simulation of catenary–pantograph interaction. Veh Syst Dyn. 2000;33:490–501.
  • Collina A, Bruni S. Numerical simulation of pantograph overhead equipment interaction. Veh Syst Dyn. 2002;38:261–291. doi: 10.1076/vesd.38.4.261.8286
  • Cho YH, Lee K, Park Y, Kang B, Kim K. Influence of contact wire pre-sag on the dynamics of pantograph-railway catenary. Int J Mech Sci. 2010;52:1471–1490. doi: 10.1016/j.ijmecsci.2010.04.002
  • Pombo J, Ambrósio J, Pereira M, Rauter F, Collina A, Facchinetti A. Influence of the aerodynamic forces on the pantograph–catenary system for high-speed trains. Veh Syst Dyn. 2009;47:1327–1347. doi: 10.1080/00423110802613402
  • Seo J-H, Kim S-W, Jung I-H, Park T-W, Mok J-Y, Kim Y-G. Dynamic analysis of a pantograph–catenary system using absolute nodal coordinates. Veh Syst Dyn. 2006;48:615–630. doi: 10.1080/00423110500373721
  • Balestrino A, Bruno O, Landi A, Sani L. Innovative solutions for overhead catenary–pantograph system: wire actuated control and observed contact force. Veh Syst Dyn. 2000;33:69–89. doi: 10.1076/0042-3114(200002)33:2;1-1;FT069
  • The Norwegian National Rail Administration. Slik fungerer jernbanen. 2011. Available from: http://www.jernbaneverket.no/PageFiles/13736/slikfungererjernbanen_2011.pdf
  • European Optimised Pantograph Catenary Interface – EUROPAC. Publishable final activity report. International Union of Railways, Coordinator Louis-Marie Cléon; 2008.
  • Bendat JS, Piersol AG. Engineering applications of correlation and spectral analysis. New York: Wiley; 1993.
  • Sutton MA, Walters WJ, Peters WH, Ranson WF, McNeill SR. Determination of displacements using an improved digital correlation method. Image Vision Comput. 1983;1:133–139. doi: 10.1016/0262-8856(83)90064-1
  • Peters WH, Ranson WF. Digital imaging techniques in experimental stress analysis. Opt Eng. 1982;21:213427. doi: 10.1117/12.7972925
  • Kim YG, Kim SW, Kim CK, Kim TW. Correlation of ride comfort evaluation methods for railway vehicles. Proc Inst Mech Eng. 2003;217:73–88. doi: 10.1243/095440903765762823
  • Doebelin EO. Measurement systems: application and design. New York: McGraw-Hill; 1990.
  • Rainieri C, Fabbrocino G. Operational modal analysis of civil engineering structures. New York: Springer; 2014.
  • Bendat JS, Piersol AG. Random data, analysis and measurement procedures. 2nd ed. New York: Wiley; 1986.
  • Welch P. The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust. 1967;15:70–73. doi: 10.1109/TAU.1967.1161901
  • Bos R, de Waele S, Broersen PMT. Autoregressive spectral estimation by application of the Burg algorithm to irregularly sampled data. IEEE Trans Instrum Meas. 2002;51:1289–1294. doi: 10.1109/TIM.2002.808031
  • Ulrych TJ, Clayton RW. Time series modelling and maximum entropy. Phys Earth Planet Inter. 1976;12:188–200. doi: 10.1016/0031-9201(76)90047-9
  • Burg JP. Maximum entropy spectral analysis [PhD thesis]. Stanford (CA): Stanford University; 1975.
  • Ulrych TJ. Maximum entropy power spectrum of truncated sinusolds. J Geophys Res. 1972;77:1396–1400. doi: 10.1029/JB077i008p01396
  • Theodoridis S, Cooper DC. Application of the maximum entropy spectrum analysis technique to signals with spectral peaks of finite width. Signal Process. 1981;3:109–122. doi: 10.1016/0165-1684(81)90076-1
  • Jung L. System identification, theory for the user. 2nd ed. Upper Saddle River, NJ: Prentice Hall; 2009.
  • Rabiner L, Allen JB. On the implementation of a short-time spectral analysis method for system identification. IEEE Trans Acoust Speech Signal Process. 1980;28:69–78. doi: 10.1109/TASSP.1980.1163360
  • Jacobsen E, Lyons R. The sliding DFT. IEEE Signal Process Mag. 2003;20:74–80.
  • Allen JB. Short term spectral analysis, synthesis, and modification by discrete Fourier transform. IEEE Trans Acoust Speech Signal Process. 1977;25:235–238. doi: 10.1109/TASSP.1977.1162950
  • The Norwegian National Rail Administration. «Mekanisk systembeskrivelse av kontaktledningsanlegg». Available from: http://www.jernbanekompetanse.no/wiki/Mekanisk_systembeskrivelse_av_kontaktledningsanlegg#Ledningsf.C3.B8ring
  • NEK EN 50149. Copper and copper alloy grooved contact wires. 2012.
  • Zhou N, Zhang W. Investigation on dynamic performance and parameter optimization design of pantograph and catenary system. Finite Elem Anal Des. 2011;47:288–295. doi: 10.1016/j.finel.2010.10.008
  • Jung S, Kim Y, Paik J, Park T. Estimation of dynamic contact force between a pantograph and catenary using the finite element method. J Comput Nonlinear Dyn. 2012;7: 041006, 13 pp.
  • Lopez-Garcia O, Carnicero A, Torres V. Computation of the initial equilibrium of railway overheads based on the catenary equation. Eng Struct. 2006;28:1387–1394. doi: 10.1016/j.engstruct.2006.01.007
  • Arias E, Alberto A, Montesinos J, Rojo T, Cuartero F, Benet J. A mathematical model of the static pantograph/catenary interaction. Int J Comput Math. 2009;86:333–340. doi: 10.1080/00207160802044100
  • Such M, Jimenez-Octavio JR, Carnicero A, Lopez-García O. An approach based on the catenary equation to deal with static analysis of three dimensional cable structures. Eng Struct. 2009;31(9):2162–2170. doi: 10.1016/j.engstruct.2009.03.018
  • Cho Y. Numerical simulation of the dynamic responses of railway overhead contact lines to a moving pantograph, considering a nonlinear dropper. J Sound Vib. 2008;315:433–454. doi: 10.1016/j.jsv.2008.02.024
  • Jensen C, True H. Dynamics of an electrical overhead line system and moving pantographs. Veh Syst Dyn. 1998;29:104–113. doi: 10.1080/00423119808969555
  • Pombo J, Ambrósio J. Influence of pantograph suspension characteristics on the contact quality with the catenary for high speed trains. Comput Struct. 2012;110–111:32–42. doi: 10.1016/j.compstruc.2012.06.005
  • MacNeal RH. Finite elements: their design and performance. New York: Marcel Dekker; 1994.
  • Rayleigh JWS. The theory of sound. vol. 1, 2nd ed. London: Macmillan; 1894.
  • Dassault Systèmes. ABAQUS 6.12 Theory manual. Providence, RI: Dassault Systèmes; 2012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.