Publication Cover
Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility
Volume 54, 2016 - Issue 12
1,131
Views
37
CrossRef citations to date
0
Altmetric
Articles

Energy-harvesting potential of automobile suspension

Pages 1651-1670 | Received 03 Mar 2016, Accepted 15 Aug 2016, Published online: 14 Sep 2016

References

  • Karnopp D. Power requirements for vehicle suspension systems. Veh Syst Dyn. 1992;21(1):65–71. doi: 10.1080/00423119208969002
  • Velinsky SA, White RA. Vehicle energy dissipation due to road roughness. Veh Syst Dyn. 1980;9:359–384. doi: 10.1080/00423118008968630
  • Suda Y, Shiba T. A new hybrid suspension system with active control and energy regeneration. Veh Syst Dyn. 1996;25(S1):641–654. doi: 10.1080/00423119608969226
  • David SB, Bobrovsky BZ. Actively controlled vehicle suspension with energy regeneration capabilities. Veh Syst Dyn. 2011;49(6):833–854. doi: 10.1080/00423114.2010.488295
  • Smith MC, Swift SJ. Power dissipation in automotive suspensions. Veh Syst Dyn. 2011;49(1–2):59–74. doi: 10.1080/00423110903427421
  • Zuo L, Zhang, P-S. Energy harvesting, ride comfort, and road handling of regenerative vehicle suspensions. J Vib. Acoust. 2013;135(1):1–8. doi: 10.1115/1.4007562
  • Khoshnoud F, Zhang Y, Shimura R, et al. Energy regeneration from suspension dynamic modes and self-powered actuation. IEEE/ASME Trans Mechatronics. 2015;20(5):2513–2524. doi: 10.1109/TMECH.2015.2392551
  • Ataei M, Asadi E, Goodarzi A, et al. Multi-objective optimization of a hybrid electromagnetic suspension system for ride comfort, road holding and regenerated power. J Vib. Control. 2015. doi: 10.1177/1077546315585219 (in press).
  • Xie XD, Wang Q. Energy harvesting from a vehicle suspension system. Energy. 2015;86:385–392. doi: 10.1016/j.energy.2015.04.009
  • Huang B, Hsieh Ch-Y, Golnaraghi F, et al. Development and optimization of an energy-regenerative suspension system under stochastic road excitation. J Sound Vib. 2015;357:16–34. doi: 10.1016/j.jsv.2015.07.004
  • Sultoni AI, Sutantra IN, Pramono AS. Modeling, prototyping and testing of regenerative electromagnetic shock absorber. Appl Mech Mater. 2014;493:395–400. doi: 10.4028/www.scientific.net/AMM.493.395
  • Mapelli F, Sabbioni E, Tarsitano D. Energy recovering from vibrations in road vehicle suspensions. Proceedings of the Society for Experimental Mechanics Series, Structural Dynamics and Renewable Energy, Vol. 1; Feb 1–4 2010. Jacksonville, FL; United States: Society for Experimental Mechanics Inc. p. 67–75.
  • Singh S, Satpute NV. Design and analysis of energy-harvesting shock absorber with electromagnetic and fluid damping. J Mech Sci Technol. 2015;29(4):1591–1605. doi: 10.1007/s12206-015-0331-7
  • Lafarge B, Cagin S, Curea O, et al. From functional analysis to energy harvesting system design: application to car suspension. Int J Interact Des Manuf. 2015;10(1):37–50. doi: 10.1007/s12008-015-0284-1
  • Guo S, Liu Y, Xu L, et al. Performance evaluation and parameter sensitivity of energy-harvesting shock absorbers on different vehicles. Veh Syst Dyn. 2016;54(7):943–962. doi: 10.1080/00423114.2016.1175646
  • Xu T-B, Jing X, Su S. Piezoelectric multilayer-stacked hybrid actuation/transduction system. US Patent No. US 20100096949; 2010.
  • Zhu S, Shen WA, Xu YL. Linear electromagnetic devices for vibration damping and energy harvesting: modeling and testing. Eng Struct. 2012;34:198–212. doi: 10.1016/j.engstruct.2011.09.024
  • Li Z, Zuo L, Kuang J, et al. Energy-harvesting shock absorber with a mechanical motion rectifier. Smart Mater Struct. 2013;22(2):1–10. doi: 10.1088/0964-1726/22/2/025008
  • Fang Z, Guo X, Xu L, et al. Experimental study of damping and energy regeneration characteristics of a hydraulic electromagnetic shock absorber. Adv Mech Eng. 2013;9:1–9.
  • Li Z, Zuo L, Luhrs G, et al. Electromagnetic energy-harvesting shock absorbers: design, modeling, and road tests. IEEE Trans Veh Technol. 2013;62(3):1065–1074. doi: 10.1109/TVT.2012.2229308
  • Li C, Zhu R, Liang M, et al. Integration of shock absorption and energy harvesting using a hydraulic rectifier. J Sound Vib. 2014;333:3904–3916. doi: 10.1016/j.jsv.2014.04.020
  • Satpute NV, Singh S, Sawant SM. Energy harvesting shock absorber with electromagnetic and fluid damping. Adv Mech Eng. 2014;15:1–15.
  • Sabzehgar R, Maravandi A, Moallem M. Energy regenerative suspension using an algebraic screw linkage mechanism. IEEE/ASME Trans Mechatronics. 2014;19(4):1251–1259. doi: 10.1109/TMECH.2013.2277854
  • Zhang Ch, Li P, Xing S, et al. Integration of regenerative shock absorber into vehicle electric system, active and passive smart structures and integrated systems. In: Wei-Hsin Liao, editor, Active and passive smart structures and integrated systems 2014 Proceedings of SPIE – The International Society for Optical Engineering; 2014 March 10–13; San Diego (CA), United States, Bellingham (WA): The International Society for Optical Engineering.
  • Maravandi A, Moallem M. Regenerative shock absorber using a two-leg motion conversion mechanism. IEEE/ASME Trans Mechatronics. 2015;20(6):2853–2861. doi: 10.1109/TMECH.2015.2395437
  • Cho TW, Lin CW, Gong RC, et al. Design, Development and evaluation of an energy-harvesting electromagnetic shock absorber. Proceedings of the 14th International Federation for the Promotion of Mechanism and Machine Science (IFToMM) World Congress; 2015 Oct 25–30; Taipei, Taiwan: International Federation for the Promotion of Mechanism and Machine Science. p. 544–551.
  • Zhang Z, Zhang X, Chen W, et al. A high-efficiency energy regenerative shock absorber using supercapacitors for renewable energy applications in range extended electric vehicle. Appl Energy. 2016;178:177–188. doi: 10.1016/j.apenergy.2016.06.054
  • Wang R, Gu F, Cattley R, et al. Modelling, testing and analysis of a regenerative hydraulic shock absorber system. Energies. 2016;9(5):386–410. doi: 10.3390/en9050386
  • Gill C, Knight C, McGarry S. Measured power dissipation of shock absorbers on light and heavy commercial vehicles. SAE Int J Commercial Veh. 2014;7(2):718–725. doi: 10.4271/2014-01-9026
  • Mossberg J, Anderson Z, Tucker C, et al. Recovering energy from shock absorber motion on heavy duty commercial vehicles. SAE Technical Paper, No. #2012-01-0814; 2012.
  • ISO 8608. Mechanical vibration – road surface profiles – reporting of measured data. Geneva: International Standardization Organization; 1995.
  • Schmeitz AJC. A semi-empirical three-dimensional model of the pneumatic tyre rolling over arbitrarily uneven road surfaces [PhD thesis]. Delft: Technische Universiteit Delft; 2004.
  • Schmeitz AJC, Jansen STH, Pacejka HB, et al. Application of a semi-empirical dynamic tyre model for rolling over arbitrary road profiles. Int J Veh Des. 2004;36(2–3):194–215. doi: 10.1504/IJVD.2004.005356
  • Múčka P, Granlund J. Is the road quality still better? J Transp Eng. 2012;138(12):1520–1529. doi: 10.1061/(ASCE)TE.1943-5436.0000460
  • Andrén P. Power spectral density approximations of longitudinal road profiles. Int J Veh Des. 2006;40(1/2/3):2–14. doi: 10.1504/IJVD.2006.008450
  • Braun H, Hellenbroich T. Results of road roughness measurement in Germany. VDI-Berichte, Nr. 877, Düsseldorf: VDI-Verlag, 1991. p. 47–80.
  • Kropáč O, Múčka P. Indicators of longitudinal unevenness of roads in the USA. Int J Veh Des. 2008;46(4):393–415. doi: 10.1504/IJVD.2008.020306
  • Spielhofer R, Brozek B, Maurer P, et al. Development of a parameter for evaluating longitudinal evenness. Straßenforschung Nr. 3.301. 2009;582:1–152 (in German).
  • Kollmer H, Kucukay F, Potter K. Measurement and fatigue damage evaluation of road profiles in customer operation. Int J Veh Des. 2011;56(1/2/3/4):106–124. doi: 10.1504/IJVD.2011.043265
  • LTPP InfoPave [online]. Federal Highway Administration, US Department of Transportation; 2014 [cited 2014 Feb 20]. Available from: www.infopave.com
  • Wei L, Griffin MJ. The prediction of seat transmissibility from measures of seat impedance. J Sound Vib. 1998;214(1):121–137. doi: 10.1006/jsvi.1998.1540
  • Sayers MW, Karamihas SM. The little book of profiling. Ann Arbor (MI): University of Michigan; 1998.
  • Merritt DK, Chang GK, Rutledge JL. Best practices for achieving and measuring pavement smoothness, a synthesis of state-of-practice. Austin (TX): The Transtec Group, Inc.; 2015.p. 58. (Report No. FHWA/LA.14/550).
  • Múčka P. International roughness index specifications around the world. Road Mater Pavement Des. 2016 (in press). doi: 10.1080/14680629.2016.1197144.
  • Sayers MW. On the calculation of IRI from longitudinal road profile. Transportation Research Record 1501. Washington (DC): Transport Research Board; 1995.
  • Sun L, Zhang Z, Ruth J. Modeling indirect statistics of surface roughness. J Transp. Eng. 2001;127(2):105–111. doi: 10.1061/(ASCE)0733-947X(2001)127:2(105)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.