Publication Cover
Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility
Volume 61, 2023 - Issue 8
219
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Dual-objective torque control of electric vehicles drivetrain with robust global finite-time stability guarantee

ORCID Icon, , &
Pages 1973-1996 | Received 30 Nov 2021, Accepted 01 Jun 2022, Published online: 04 Jul 2022

References

  • Liu W, He H, Sun F, et al. Optimal design of adaptive shaking vibration control for electric vehicles. Vehicle Syst Dyn. 2019;57(1):134–159. DOI:10.1080/00423114.2018.1447676
  • Liu H, Zhang X, Chen Y, et al. Active damping of driveline vibration in power-split hybrid vehicles based on model reference control. Control Eng Pract. 2019;91:Article ID 104085. Available from: https://www.sciencedirect.com/science/article/pii/S0967066119301029.
  • Syed FU, Kuang ML, Ying H. Active damping wheel-torque control system to reduce driveline oscillations in a power-split hybrid electric vehicle. IEEE Trans Veh Technol. 2009;58(9):4769–4785.
  • Mashadi B, Badrykoohi M. Driveline oscillation control by using a dry clutch system. Appl Math Model. 2015;39(21):6471–6490.
  • Lv C, Zhang J, Li Y, et al. Mode-switching-based active control of a powertrain system with non-linear backlash and flexibility for an electric vehicle during regenerative deceleration. Proc Inst Mech Eng D. 2015;229(11):1429–1442.
  • Zhang J, Li Y, Lv C, et al. Time-varying delays compensation algorithm for powertrain active damping of an electrified vehicle equipped with an axle motor during regenerative braking. Mech Syst Signal Process. 2017 Jan;87(Pt.B):45–63.
  • Fredriksson J, Weiefors H, Egardt B. Powertrain control for active damping of driveline oscillations. Vehicle Syst Dyn. 2002 Jan;37(5):359–376.
  • Yang C, Jiao X, Li L, et al. A robust h-infinity control-based hierarchical mode transition control system for plug-in hybrid electric vehicle. Mech Syst Signal Process. 2018 Jan;99:326–344.
  • Chen L, Xi G, Sun J. Torque coordination control during mode transition for a series–parallel hybrid electric vehicle. IEEE Trans Veh Technol. 2012;61(7):2936–2949.
  • van Berkel K, Veldpaus F, Hofman T, et al. Fast and smooth clutch engagement control for a mechanical hybrid powertrain. IEEE Trans Control Syst Technol. 2014;22(4):1241–1254.
  • Ito Y, Tomura S, Sasaki S. Development of vibration reduction motor control for hybrid vehicles. In: IECON 2007 – 33rd Annual Conference of the IEEE Industrial Electronics Society; 2007. p. 516–521.
  • Walker PD, Nong Z. Active damping of transient vibration in dual clutch transmission equipped powertrains: a comparison of conventional and hybrid electric vehicles. Mech Mach Theory. 2014;77:1–12.
  • Kou YS, Weslati F. Development of a hybrid powertrain active damping control system via sliding mode control scheme. In: SAE 2013 world congress and Exhibition; 2013 Apr 16–18; Detroit, Michigan, USA. Detroit: Chryser Grou LLC; 2013. p. 3830–3835.
  • Karikomi T, Itou K, Okubo T, et al. Development of the shaking vibration control for electric vehicles. In: International Joint International on SICE-ICASE; 2007.
  • Kawamura H, Ito K, Karikomi T, et al. Highly-responsive acceleration control for the nissan leaf electric vehicle. In: Transmission and Driveline, 2011; Detroit (MI): Nissn Moor Co Ld; 2011. p. 115–119.
  • Amann N, Bocker J, Prenner F. Active damping of drive train oscillations for an electrically driven vehicle. IEEE ASME Trans Mechatron. 2004;9(4):697–700.
  • Caruntu CF, Balau AE, Lazar M, et al. Driveline oscillations damping: a tractable predictive control solution based on a piecewise affine model. Nonlinear Anal Hybrid Syst. 2016 Jan;19:168–185.
  • Lv C, Liu Y, Hu X, et al. Simultaneous observation of hybrid states for cyber-physical systems: a case study of electric vehicle powertrain. IEEE Trans Cybern. 2018;48(8):2357–2367.
  • Song Z, Li J, Shuai Z, et al. Fuzzy logic torque control system in four-wheel-drive electric vehicles for active damping vibration control. Int J Veh Des. 2015 Jan;68(1/3):55–80.
  • Li HZ, Li L, He L, et al. Pid plus fuzzy logic method for torque control in traction control system. Int J Autom Technol. 2012;13(3):441–450.
  • Utkin VI, Chang HC. Sliding mode control on electro-mechanical systems. Math Probl Eng. 2002 Jan;8(4/5):451–473.
  • Deur J, Pavković D, Burgio G, et al. A model-based traction control strategy non-reliant on wheel slip information. Vehicle Syst Dyn. 2011;49(8):1245–1265. DOI:10.1080/00423114.2010.511675
  • Bottiglione F, Sorniotti A, Shead L. The effect of half-shaft torsion dynamics on the performance of a traction control system for electric vehicles. Proc Inst Mech Eng D. 2012;226(9):1145–1159. DOI:10.1177/0954407012440526
  • Batra M, McPhee J, Azad NL. Real-time model predictive control of connected electric vehicles. Vehicle Syst Dyn. 2019 Jan;57(10/12):1720–1743.
  • Zhihong M, Yu XH. Terminal sliding mode control of mimo linear systems. IEEE Trans Circuits Syst. 1997 Jan;44(11):1065–1070.
  • Hou H, Yu X, Xu L, et al. Finite-time continuous terminal sliding mode control of servo motor systems. IEEE Trans Ind Electron. 2020 Jan;67(7):5647–5656.
  • Zaare S, Soltanpour MR. Continuous fuzzy nonsingular terminal sliding mode control of flexible joints robot manipulators based on nonlinear finite time observer in the presence of matched and mismatched uncertainties. J Franklin Inst. 2020 Jan;357(11):6539–6570.
  • Tiwari PM, Janardhanan S, Nabi M. Spacecraft attitude control using non-singular finite time convergence fast terminal sliding mode. Int J Instrum Technol. 2012 Jan;1(2):124–142.
  • Bhat SP, Bernstein DS. Finite-time stability of homogeneous systems. In: Proceedings of the American Control Conference; 1997.
  • Bhat SP, Bernstein DS. Finite-time stability of continuous autonomous systems. SIAM J Control Optim. 2000 Jan;38(3):751–766.
  • Yin J, Khoo S, Man Z, et al. Finite-time stability and instability of stochastic nonlinear systems. Automatica. 2011 Jan;47(12):2671–2677.
  • Grotjahn M, Quernheim L, Zemke S. Modelling and identification of car driveline dynamics for anti-jerk controller design. In: 2006 IEEE International Conference on Mechatronics; 2006.
  • Gong X, Suh J, Lin C. A novel method for identifying inertial parameters of electric vehicles based on the dual H infinity filter. Vehicle Syst Dyn. 2020 Jan;58(1/3):28–48.
  • Kiencke U, Nielsen L. Automotive control system for engine, driveline, and vehicle. Berlin Heidelberg: Springer-Vetlag; 2005.
  • Amann N, Bocker J, Prenner F. Active damping of drive train oscillations for an electrically driven vehicle. IEEE/ASME Trans Mechatron. 2004 Jan;9(4):697–700.
  • Polyakov A. Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans Automat Contr. 2012 Jan;57(8):2106–2110.
  • Ioannou PA, Sun J. Robust adaptive control. New Jersey: Prentice-Hall, Inc.; 1995.
  • Khooban MH, Niknam T, Blaabjerg F, et al. Free chattering hybrid sliding mode control for a class of non-linear systems: electric vehicles as a case study. IET Sci Meas Technol. 2016;10(7):776–785.
  • Momberg JJ. Driveability evaluation for engine management calibration. Stellenbosch: University of Stellenbosch; 2007.
  • Martinez JJ, de Wit CC. A safe longitudinal control for adaptive cruise control and stop-and-go scenarios. IEEE Trans Control Syst Technol. 2007 Jan;15(2):246–258.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.