Publication Cover
Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility
Volume 62, 2024 - Issue 1
486
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Feasible trajectory planning for minimum time manoeuvring

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 244-275 | Received 16 Mar 2022, Accepted 14 Dec 2022, Published online: 09 Jan 2023

References

  • Veneri M, Massaro M. A free-trajectory quasi-steady-state optimal-control method for minimum lap-time of race vehicles. Veh Syst Dyn. 2019 Apr;58(6):933–954.
  • Tucker K, Gover R, Jazar RN, et al. A comparison of free trajectory quasi-steady-state and transient vehicle models in minimum time manoeuvres. Veh Syst Dyn. 2021;60(11):3897–3929. https://doi.org/10.1080/00423114.2021.1983181.
  • Kabzan J, Valls M, Reijgwart V, et al. AMZ driverless: the full autonomous racing system. J Field Robot. 2020 Oct;37(7):1267–1294.
  • Ni J, Hu J. Dynamics control of autonomous vehicle at driving limits and experiment on an autonomous formula racing car. Mech Syst Signal Process. 2017 Jun;90(1):154–174.
  • Novi T, Liniger A, Capitani R, et al. Real-time control for at-limit handling driving on a predefined path. Veh Syst Dyn. 2019;58(7):1007–1036.
  • Brayshaw D. Use of numerical optimisation to determine on-limit handling behaviour of race cars [PhD thesis]. Cranfield University; 2004.
  • Perantoni G, Limebeer D. Optimal control for a formula one car with variable parameters. Veh Syst Dyn. 2014;52(5):653–678.
  • Lot R, Dal Bianco N. The significance of high-order dynamics in lap time simulations. In: The Dynamics of Vehicles on Roads and Tracks; Aug; Graz, Austria; 2015.
  • Massaro M, Limebeer DJN. Minimum-lap-time optimisation and simulation. Veh Syst Dyn. 2021;59(7):1069–1113. https://doi.org/10.1080/00423114.2021.1910718
  • Scherenberg H. 1957. Mercedes Benz racing cars, design and experience. SAE Trans. 580042:414–420.
  • Brayshaw D, Harrison M. A quasi steady state approach to race car lap simulation in order to understand the effects of racing line and centre of gravity location. Proc Inst Mech Eng D J Automob Eng. 2005;219(6):725–739.
  • Brayshaw D, Harrison M. Use of numerical optimization to determine the effect of the roll stiffness distribution on race car performance. Proc Inst Mech Eng D J Automob Eng. 2005 Oct;219(10):1141–1151.
  • Tremlett AJ, Assadian F, Purdy DJ, et al. Quasi-steady-state linearisation of the racing vehicle acceleration envelope: a limited slip differential example. Veh Syst Dyn. 2014;52(11):1416–1442.
  • Lovato S, Massaro M. Three-dimensional fixed-trajectory approaches to the minimum-lap time of road vehicles. Veh Syst Dyn. 2021;60:1–18. https://doi.org/10.1080/00423114.2021.1969024.
  • Velenis E, Tsiotras P. Optimal velocity profile generation for given acceleration limits: theoretical analysis. In: Proceedings of the 2005 American Control Conference, 2005. p. 1478–1483. IEEE.
  • Lenzo B, Rossi V. A simple mono-dimensional approach for lap time optimisation. Appl Sci. 2020;10(4):1498.Available from: https://www.mdpi.com/2076-3417/10/4/1498
  • Völkl T, Muehlmeier M, Winner H. Extended steady state lap time simulation for analyzing transient vehicle behavior. SAE Int J Passeng Cars Mech Syst. 2013;6(1):283–292.
  • Lovato S, Massaro M. A three-dimensional free-trajectory quasi-steady-state optimal-control method for minimum-lap-time of race vehicles. Veh Syst Dyn. 2021;60(5):1512–1530.
  • Hegedüs F, Bécsi T, Aradi S. Dynamically feasible trajectory planning for road vehicles in terms of sensitivity and robustness. Transportation Research Procedia. 2017;27:799–807. 20th EURO Working Group on Transportation Meeting, EWGT 2017, 4–6 September 2017, Budapest, Hungary. Available from: https://www.sciencedirect.com/science/article/pii/S2352146517310074
  • Lot R, Biral F. A curvilinear abscissa approach for the lap time optimization of racing vehicles. IFAC Proceedings Volumes. 2014;47(3):7559–7565.
  • Lovato S, Massaro M. A three-dimensional free-trajectory quasi-steady-state optimal-control method for minimum-lap-time of race vehicles. Veh Syst Dyn. 2021;60(5):1–19. https://doi.org/10.1080/00423114.2021.1878242.
  • Limebeer D, Perantoni G. Optimal control of a formula one car on a three-dimensional track. J Dyn Syst Meas Control. 2015;137(5):051019.
  • Siegler B, Deakin A, Crolla D. Lap time simulation: comparison of steady state, quasi-static and transient racing car cornering strategies. SAE Technical Papers. 2000;2000-01-3563:2575–2581. https://doi.org/10.4271/2000-01-3563.
  • Analooee A, Kazemi R, Azadi S. Scr-normalize: a novel trajectory planning method based on explicit quintic polynomial curves. Proc Inst Mech Eng K J Multi-body Dyn. 2020;234(4):650–674https://doi.org/10.1177/1464419320924196
  • Ghani MFM, Taib JM, Dzakaria A. Feasibility study on the implementation of cubic motion curve for vehicle trajectory planning. Adv Mech Eng. 2015;7(2):413847. https://doi.org/10.1155/2014/413847
  • Marzbani H, Khayyam H, To CN, et al. Autonomous vehicles: autodriver algorithm and vehicle dynamics. IEEE Trans Veh Technol. 2019;68(4):3201–3211.
  • Kapania NR, Subosits JK, Gerdes JC. A sequential two-step algorithm for fast generation of vehicle racing trajectories. CoRR. 2019;abs/1902.00606. http://arxiv.org/abs/1902.00606
  • Kritayakirana K. Autonomous vehicle control at the limits of handling. Int J Veh Auton Syst. 2012;10(4):271–296.
  • Funke J, Theodosis P, Hindiyeh R, et al. Up to the limits: autonomous Audi TTS. In 2012 IEEE Intelligent Vehicles Symposium. 2012: 541–547. IEEE.
  • Kritayakirana K, Gerdes JC. Autonomous cornering at the limits: maximizing a G-G diagram by using feedforward trail-braking and throttle-on-exit. In IFAC Proceedings Volumes. 2010;43:548–553.
  • Li S, Li Z, Yu Z, et al. Dynamic trajectory planning and tracking for autonomous vehicle with obstacle avoidance based on model predictive control. IEEE Access. 2019;7:132074–132086.
  • Durali M, Javid G, Kasaiezadeh A. Collision avoidance maneuver for an autonomous vehicle. 9th IEEE International Workshop on Advanced Motion Control, Istanbul, Turkey; 2006. p. 249–254. IEEE.
  • Choi J. Kinodynamic motion planning for autonomous vehicles. Int J Adv Robot Syst. 2014;11(6):90. https://doi.org/10.5772/58683
  • Braghin F, Cheli F, Melzi S, et al. Race driver model. Comput Struct. 2008;86:1503–1516.
  • Heilmeier A, Wischnewski A, Hermansdorfer L, et al. Minimum curvature trajectory planning and control for an autonomous race car. Veh Syst Dyn. 2020;58(10):1497–1527. https://doi.org/10.1080/00423114.2019.1631455
  • Mühlmeier M, Müller N. Optimization of the driving line on a race track. AutoTechnology. 2003 Mar;3(2):68–71.
  • Wischnewski A, Betz J, Lohmann B. A model-free algorithm to safely approach the handling limit of an autonomous racecar. In: 2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE); IEEE; 2019. p. 1–6.
  • Heilmeier A, Geisslinger M, Betz J. A quasi-steady-state lap time simulation for electrified race cars. In 2019 Fourteenth International Conference on Ecological Vehicles and Renewable Energies (EVER); 2019. IEEE.
  • Stahl T, Wischnewski A, Betz J, et al. Multilayer graph-based trajectory planning for race vehicles in dynamic scenarios. 2019 IEEE Intelligent Transportation Systems Conference (ITSC); 2019. http://doi.org/10.1109/ITSC.2019.8917032.
  • Betz J, Wischnewski A, Heilmeier A, et al. A software architecture for the dynamic path planning of an autonomous racecar at the limits of handling. In 2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE), Graz, Austria; 2019. IEEE.
  • Cardamone L, Loiacono D, Lanzi PL, et al. Searching for the optimal racing line using genetic algorithms. In Proceedings of the 2010 IEEE Conference on Computational Intelligence and Games, Copenhagen, Denmark; 2010. IEEE.
  • Winter C, Ritzer P, Brembeck J. Experimental investigation of online path planning for electric vehicles. In 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil; 2016. IEEE.
  • Caporale D, Fagiolini A, Pallottino L, et al. A planning and control system for self-driving racing vehicles. In 2018 IEEE 4th International Forum on Research and Technology for Society and Industry (RTSI), Palermo, Italy; 2018. IEEE.
  • Brembeck J, Winter C. Real-time capable path planning for energy management systems in future vehicle architectures. In 2014 IEEE Intelligent Vehicles Symposium Proceedings, Dearborn, MI, USA; 2014. IEEE.
  • Aulinas J, Petillot Y, Salvi J, et al. The slam problem: a survey. Artificial Intelligence Research and Development. 2008;184:363–371.
  • Barfoot T, Clark C. Motion planning for formations of mobile robots. Rob Auton Syst. 2004;46(2):65–78. Available from: https://www.sciencedirect.com/science/article/pii/S0921889003001854
  • Li X, Sun Z, Cao D, et al. Real-time trajectory planning for autonomous urban driving: framework, algorithms, and verifications. IEEE ASME Trans Mechatron. 2016;21(2):740–753.
  • Domahidi A, Jerez J. FORCES professional. Embotech GmbH; 2020.
  • Zanelli A, Domahidi A, Jerez J, et al. FORCES NLP: an efficient implementation of interior-point methods for multistage nonlinear nonconvex programs. Int J Control. 2017;93(1):13–29.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.