Publication Cover
Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility
Volume 62, 2024 - Issue 1
2,333
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Augmented digital twin for railway systems

, , &
Pages 67-83 | Received 08 Nov 2022, Accepted 17 Mar 2023, Published online: 30 Mar 2023

References

  • Wu Q, Spiryagin M, Sun Y, et al. Parallel co-simulation of locomotive wheel wear and rolling contact fatigue in a heavy haul train operational environment. Proc Inst Mech Eng Part F J Rail Rapid Transit. 2021;235:166–178. doi:10.1177/0954409720908497.
  • Iwnicki S, Spiryagin M, Cole C, et al. Handbook of railway vehicle dynamics. 2nd ed. Boca Raton: CRC Press; 2019. doi:10.1201/9781420004892.
  • Bernal E, Spiryagin M, Cole C. Onboard condition monitoring sensors, systems and techniques for freight railway vehicles: A review. IEEE Sens J. 2019;19:4–24. doi:10.1109/JSEN.2018.2875160.
  • Xia F, Cole C, Wolfs P. An inverse railway wagon model and its applications. User Model User-Adapt Interact. 2007;45:583–605. doi:10.1080/00423110601079151.
  • Pool A. Digital Twins in Rail Freight-The foundations of a future innovation, (2021) 1–137. http://essay.utwente.nl/88902/.
  • Wang Y, Nadarajah N, Oldknow K, et al. Estimating derailment risk using parametric wheel-rail profile characterisation, in: 12th Int. Conf. Contact Mech. Wear Rail/Wheel Syst. (CM2022), Melbourne, Aust., 2022: pp. 4–7.
  • Pires AC, Mendes GR, Santos GFM, et al. Indirect identification of wheel rail contact forces of an instrumented heavy haul railway vehicle using machine learning. Mech: Syst Signal Process. 2021;160:107806. doi:10.1016/j.ymssp.2021.107806.
  • Guo L, Wang K. Analysis of coupler jackknifing and its effect on locomotives on a tangent track. Proc Inst Mech Eng Part F J Rail Rapid Transit. 2018;232:1559–1573. doi:10.1177/0954409717738429.
  • Wu Q, Cole C, Spiryagin M. Characterising stochastic friction in railway draft gear. Veh Syst Dyn. 2022;60:1959–1971. doi:10.1080/00423114.2021.1889003.
  • Wu Q, Spiryagin M, Cole C. Longitudinal train dynamics: an overview. Veh Syst Dyn. 2016;54:1688–1714. doi:10.1080/00423114.2016.1228988.
  • Wu Q, Cole C, Spiryagin M. Coupler force and fatigue assessments with stochasticdraft gear frictions. J Traffic Transp Eng (English Ed). 2023. doi:10.1016/j.jtte.2021.05.006.
  • P. Raj, C. Surianarayanan, Digital twin: the industry use cases. In: Raj P, Evangeline P, editors. Adv comput Vol. 117. [e-book]: Elsevier, 2020: pp. 285–320.
  • Glaessgen EH, Stargel DS. The digital twin paradigm for future NASA and U.S. Air force vehicles, Collect. Tech. Pap. - AIAA/ASME/ASCE/AHS/ASC Struct. Struct. Dyn. Mater. Conf. (2012). doi:10.2514/6.2012-1818.
  • Xia F, Cole C, Wolfs P. A method for setting wagon speed restrictions based on wagon responses. Veh Syst Dyn. 2006;44:424–432. doi:10.1080/00423110600872465.
  • The CALC Func manual. (n.d.). Accessed June 13, 2022. http://www.gensys.se/doc_html/calc_func.html#jwr_coupl_pe3.
  • Spiryagin M, George A, Ahmad SSN, et al. Wagon model acceptance procedure using Australian standards, in: Proc. Conf. Railw. Eng., 2012: pp. 343–350.
  • RISSB. AS 7509.2:2009 - Railway Rolling Stock - Dynamic Behaviour - Part 2: Freight Rolling Stock, 2009.
  • RISSB. AS 7517:2014 - Rolling Stock Standard - Wheelsets, 2014.
  • RISSB. Australian Standard - AS 1085.1 - Railway track materials Part 1: Steel rails, 2019.
  • Persson I, Spiryagin M, Casanueva C. Influence of non-dry condition creep curves in switch negotiation. Veh Syst Dyn. 2023;61:892–904.
  • Federal Railroad Administration. (2014). Track safety standards–Classes 1 through 5, Chapter 1 in: Track and rail and infrastructure integrity compliance manual.
  • Central Queensland University. The History of CQU’s HPC facilities, 4 (2023). https://www.cqu.edu.au/eresearch/high-performance-computing/hpc-systems.
  • Wu Q, Cole C, Spiryagin M. Parallel computing enables whole-trip train dynamics optimizations. J: Comput Nonlinear Dyn. 2016;11:1–4. doi:10.1115/1.4032075.
  • Pearce TG, Sherratt ND. Prediction of wheel profile wear. Wear. 1991;144:343351.
  • Johnson KL. A graphical approach to shakedown in rolling contact. In: Hyde T.H., Ollerton E, editors. Appl. stress anal.. Dordrecht: Springer; 1990. pp. 263–274. doi:10.1007/978-94-009-0779-9_26.
  • Chenariyan Nakhaee M, Hiemstra D, Stoelinga M, et al. The Recent Applications of Machine Learning in Rail Track Maintenance: A Survey, in: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 2019: pp. 91–105. doi:10.1007/978-3-030-18744-6_6.
  • User guide: contents — scikit-learn 1.1.2 documentation, (n.d.). Accessed September 29, 2022. https://scikit-learn.org/stable/user_guide.html.
  • Russell SJ. Artificial intelligence a modern approach. Upper Saddle River, New Jersey: Pearson Education, Inc; 2010.
  • Gordon AD, Breiman L, Friedman JH, et al. Classification and regression trees. Biometrics. 1984;40:874, doi:10.2307/2530946.
  • Cole C, Spiryagin M, Wu Q, et al. Modelling, simulation and applications of longitudinal train dynamics. Veh Syst Dyn. 2017;55:1498–1571.
  • Cole C, Mcclanachan M, Simson S, et al. Train Cruise Control. in Proceedings of the 9th International Heavy Haul Conference. 2009;638–645.
  • Bernal E, Spiryagin M, Vollebregt E, et al. Prediction of rail surface damage in locomotive traction operations using laboratory-field measured and calibrated data. Eng Fail Anal. 2022;135:106165.
  • Bernal E, Spiryagin M, Wu Q, et al. iNEW method for experimental-numerical locomotive studies focused on rail wear prediction. Mech Syst Signal Process. 2022;186:109898. doi:10.1016/j.ymssp.2022.109898.
  • Stock R, Eadie DT, Elvidge D, et al. Influencing rolling contact fatigue through top of rail friction modifier application - A full scale wheel-rail test rig study. Wear. 2011;271:134–142. doi:10.1016/j.wear.2010.10.006.