Publication Cover
Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility
Volume 62, 2024 - Issue 1
1,309
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Development of a Digital Twin for prediction of rail surface damage in heavy haul railway operations

ORCID Icon, , , , , & show all
Pages 41-66 | Received 27 Sep 2022, Accepted 15 Mar 2023, Published online: 20 Jul 2023

References

  • Magel E, Sroba P, Sawley K, et al. Control of rolling contact fatigue of rails. Presented at the AREMA Conference; Sept 2004; Nashville, Tennessee.
  • Lewis R, Olofsson U. Mapping rail wear regimes and transitions. Wear. 2004;257(7):721–729. doi:https://doi.org/10.1016/j.wear.2004.03.019
  • Santa JF, Toro A, Lewis R. Correlations between rail wear rates and operating conditions in a commercial railroad. Tribol Int. 2016;95:5–12. doi:https://doi.org/10.1016/j.triboint.2015.11.003
  • Santamaria J, Vadillo E, Oyarzabal O. Wheel–rail wear index prediction considering multiple contact patches. Wear. 2009;267(5-8):1100–1104. doi:10.1016/j.wear.2008.12.040
  • Pearce TG, Sherratt ND. Prediction of wheel profile wear. Wear. 1991;144(1):343–351. https://doi.org/10.1016/0043-1648(91)90025-P
  • Tassini N, Quost X, Lewis R, et al. A numerical model of twin disc test arrangement for the evaluation of railway wheel wear prediction methods. Wear. 2010;268(5):660–667. https://doi.org/10.1016/j.wear.2009.11.003
  • Zobory I. Prediction of wheel/rail profile wear. Veh Syst Dyn. 1997;28(2-3):221–259. doi:10.1080/00423119708969355
  • Burstow M. Whole life rail model application and development: development of a rolling contact fatigue damage parameter. Rail Safety and Standard’s Board (RSSB), AEATR-ES-2003-832 Issue 1, 2003.
  • Spiryagin M, Polach O, Cole C. Creep force modelling for rail traction vehicles based on the Fastsim algorithm. Veh Syst Dyn. 2013;51(11):1765–1783. doi:10.1080/00423114.2013.826370
  • Vollebregt EAH. Numerical modeling of measured railway creep versus creep-force curves with CONTACT. Wear. 2014;314(1):87–95. https://doi.org/10.1016/j.wear.2013.11.030
  • Kalker JJ. A fast algorithm for the simplified theory of rolling contact. Veh Syst Dyn. 1982;11(1):1–13. doi:10.1080/00423118208968684
  • Schleich B, Anwer N, Mathieu L, et al. Shaping the digital twin for design and production engineering. CIRP Ann. 2017;66(1):141–144. doi:https://doi.org/10.1016/j.cirp.2017.04.040
  • Grieves M, Vickers J. Digital twin: mitigating unpredictable, undesirable emergent behavior in complex systems. 2017. p. 85–113.
  • Krishna VV, Wu Q, Hossein-Nia S, et al. Long freight trains & long-term rail surface damage – a systems perspective. Veh Syst Dyn. 2023;61:1500–1523. doi:10.1080/00423114.2022.2085584
  • Sun YQ, Nielsen D, Wu Q, et al. Design and safety analysis of a 11-Waggon consist for transporting rails. Aust J Mech Eng. 2022:1–15. doi:10.1080/14484846.2021.2022576
  • Bernal E, Spiryagin M, Vollebregt E, et al. Prediction of rail surface damage in locomotive traction operations using laboratory-field measured and calibrated data. Eng Fail Anal. 2022;135; Art no. 106165. doi:10.1016/j.engfailanal.2022.106165
  • Zhang H, Qi Q, Tao F. A multi-scale modeling method for digital twin shop-floor. J Manuf Syst. 2022;62:417–428. https://doi.org/10.1016/j.jmsy.2021.12.011
  • Glaessgen E, Stargel D. The digital twin paradigm for future NASA and U.S. air force vehicles. 2012.
  • Wu J, Wang X, Dang Y, et al. Digital twins and artificial intelligence in transportation infrastructure: classification, application, and future research directions. Comput Electr Eng. 2022;101:107983. https://doi.org/10.1016/j.compeleceng.2022.107983
  • Tao F, Liu W, Zhang M, et al. Five-dimension digital twin model and its ten applications. Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS. 01/01 2019;25:1–18. doi:10.13196/j.cims.2019.01.001
  • Bhatti G, Mohan H, Singh RR. Towards the future of smart electric vehicles: digital twin technology. Renewable Sustainable Energy Rev. 2021;141:110801. doi:https://doi.org/10.1016/j.rser.2021.110801
  • Tao F, Sui F, Liu A, et al. Digital twin-driven product design framework. Int J Prod Res. 2019;57(12):3935–3953. doi:10.1080/00207543.2018.1443229
  • Cherepov O, Antropov A, Karmatskiy V, et al. Methodology for estimating the resource of the friction vibration damper of a freight car trolley. J Phys Conf Ser. 2021;2094(2021). doi:10.1088/1742-6596/2094/5/052064
  • Miller S. Predictive maintenance using a digital twin. MathWorks; [cited 2022 Jul 22]. Available from: https://au.mathworks.com/company/newsletters/articles/predictive-maintenance-using-a-digital-twin.html
  • Bentley Systems. How digital twins Can transform track maintenance. Railway Age, October 29, 2020. Available from: https://www.railwayage.com/analytics/how-digital-twins-support-big-data-driven-decisions-to-transform-track-maintenance/
  • Rasheed A, San O, Kvamsdal T. Digital twin: values, challenges and enablers from a modeling perspective. IEEE Access. 2020;8:21980–22012. doi:10.1109/ACCESS.2020.2970143
  • Wright L, Davidson S. How to tell the difference between a model and a digital twin. Adv Model Simul Eng Sci. 2020;7(13). doi:https://doi.org/10.1186/s40323-020-00147-4
  • Schwarz C, Wang Z. The role of digital twins in connected and automated vehicles. IEEE Intell Transp Syst Mag. 2022;14:41–51. doi:10.1109/MITS.2021.3129524
  • Spiryagin M, Bruni S, Bosomworth C, et al. Rail vehicle mechatronics. Boca Raton, CRC Press; 2021.
  • Dirks B, Enblom R. Prediction model for wheel profile wear and rolling contact fatigue. Wear. 2011;271(1):210–217. doi:https://doi.org/10.1016/j.wear.2010.10.028
  • Wu Q, Spiryagin M, Sun Y, et al. Parallel co-simulation of locomotive wheel wear and rolling contact fatigue in a heavy haul train operational environment. Proc Inst Mech Eng. F: J Rail Rapid Transit. 2021;235(2):166–178. doi:10.1177/0954409720908497
  • Bohmer A, Ertz M, Knothe K. Shakedown limit of rail surfaces including material hardening and thermal stresses. Fatigue Fract Eng Mater Struct. 2003;26(10):985–998. doi:10.1046/j.1460-2695.2003.00690.x
  • Ekberg A, Kabo E, Andersson H. An engineering model for prediction of rolling contact fatigue of railway wheels. Fatigue Fract Eng Mater Struct. 2002;25(10):899–909. doi:10.1046/j.1460-2695.2002.00535.x
  • Hiensch M, Steenbergen M. Rolling contact fatigue on premium rail grades: damage function development from field data. Wear. 2018;394-395:187–194. doi:https://doi.org/10.1016/j.wear.2017.10.018
  • INNOTRACK. Definitive guidelines on the use of different rail grades, in “Thematic Priority 6: Sustainable Development, Global Change and Ecosystems,” Project No. TIP5-CT-2006-031415.
  • Six K, Mihalj T, Marte C, et al. Rolling contact fatigue behaviour of rails: wedge model predictions in T-Gamma world. Proc Inst Mech Eng F: J Rail Rapid Transit. 2020;234(10):1335–1345. doi:10.1177/0954409719896941
  • Cole C, Spiryagin M, Wu Q, et al. Modelling, simulation and applications of longitudinal train dynamics. Veh Syst Dyn. 2017;55(10):1498–1571. doi:10.1080/00423114.2017.1330484
  • AB DEsolver. Gensys.1908. http://gensys.se/news/rel.1908/index.html#.
  • Rail Industry Safety & Standards Board (RISSB). Rolling stock – dynamic behaviour, AS 7509: 2017, ed, 2017.
  • Spiryagin M, George A, Sun YQ, et al. Investigation of locomotive multibody modelling issues and results assessment based on the locomotive model acceptance procedure. Proc Inst Mech Eng F: J Rail Rapid Transit. 2013;227(5):453–468. doi:10.1177/0954409713494945
  • Spiryagin M, Wolfs P, Cole C, et al. Design and simulation of heavy Haul locomotives and trains. 2016.
  • Gensys Manual. c_type=‘creep_contact_1’; [cited 2020 May 27]. Available from: http://gensys.se/doc_html/calc_coupl.html#jcreep_contact_1
  • VORTECH. Detailed investigation of 3D frictional contact problems; [cited 2020 May 27]. Available from: https://kalkersoftware.org/
  • Polach O. Creep forces in simulations of traction vehicles running on adhesion limit. Wear. 2005;258(7–8):992–1000. http://doi.org/10.1016/j.wear.2004.03.046
  • Spiryagin M, Wolfs P, Wu Q, et al. Rapid charging energy storage system for a hybrid freight locomotive. Proceedings of the 2020 ASME Joint Rail Conference; 2020 Apr 19–22; St. Louis, MO, USA.
  • Spiryagin M, Wolfs P, Szanto F, et al. Simplified and advanced modelling of traction control systems of heavy-haul locomotives. Veh Syst Dyn. 2015;53(5):672–691. doi:10.1080/00423114.2015.1008016
  • Spiryagin M, Simson S, Cole C, et al. Co-simulation of a mechatronic system using Gensys and Simulink. Veh Syst Dyn. 2012;50(3):495–507. doi:10.1080/00423114.2011.598940
  • ARTC. Track Geometry, Section 5. In Code of Practice, Track & Civil, 2021.
  • Rakoczy AM, Wilson N, Li D. Cant excess for freight train operations on shared track, DOT/FRA/ORD-20/05, 2020.
  • Spiryagin M, Ahmad SSN, Cole C, et al. Wagon multibody model and its real-time application. In: Flores P, Viadero F, editors. New trends in mechanism and machine science, Vol. 24. Mechanisms and Machine Science: Springer International Publishing Switzerland; 2015, ch. 56. p. 523–532.
  • Bevan A, Jaiswal J, Smith A, et al. Judicious selection of available rail steels to reduce life-cycle costs. Proc Inst Mech Eng F: J Rail Rapid Transit. 2020;234(3):257–275. doi:10.1177/0954409718802639
  • Marich S, Mutton PJ. Materials developments in the Australian Railway Industry – past, present and future. Presented at the The Fourth International Heavy Haul Conference; 1989 Sept 11–15.
  • Grassie S. Rolling contact fatigue of rails: characteristics, causes and treatments. Presented at the 6th International Heavy Haul Railway Conference, (IHHA 1997); 1997 April 6–10; Cape Town, South Africa.
  • Australian Rail Track Corporation Ltd (ARTC). Rail defects handbook – some rail defects, their characteristics, Causes and control, in engineering practices manual civil engineering, RC 2400, 2006.