Publication Cover
Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility
Volume 62, 2024 - Issue 8
719
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Using inerter-integrated absorbers to improve the performance of an in-wheel motor system

, , , , &
Pages 2162-2183 | Received 02 Nov 2022, Accepted 27 Oct 2023, Published online: 18 Nov 2023

References

  • Wu B, Offer GJ. Environmental impact of hybrid and electric vehicles.In: Environmental impacts of road vehicles: Past, present and future. 1st Edition. London: Royal Society of Chemistry; 2017. p. 133–156.
  • Adams W. Electric motor; U.S. Patent US300827A. 24 June 1884.
  • Murata S. Innovation by in-wheel-motor drive unit. Veh Syst Dyn. 2012;50(6):807–830. doi: 10.1080/00423114.2012.666354
  • Liu M, Gu F, Huang J, et al. Integration design and optimization control of a dynamic vibration absorber for electric wheels with in-wheel motor. Energies. 2017;10(12):2069.
  • Hrovat D. Influence of unsprung weight on ride quality. J Sound Vib. 1988;124:497–516. doi: 10.1016/S0022-460X(88)81391-9
  • Campbell C. Automobile suspensions. 1st ed. London: Chapman and Hall; 1981.
  • Esmailzadeh E, Vossoughi G, Goodarzi A. Dynamic modeling and analysis of a four motorized wheels electric vehicle. Veh Syst Dyn. 2001;35(3):163–194. doi: 10.1076/vesd.35.3.163.2047
  • Tan D, Wu Y, Feng J, et al. Lightweight design of the in-wheel motor considering the coupled electromagnetic-thermal effect. Mech Based Des Struct Mach. 2022;50(3):935–953.
  • Luo Y, Tan D. Study on the dynamics of the in-wheel motor system. IEEE Trans Veh Technol. 2012;61:3510–3518. doi: 10.1109/TVT.2012.2207414
  • Wang Q, Li R, Zhu Y, et al. Integration design and parameter optimization for a novel in-wheel motor with dynamic vibration absorbers. J Braz Soc Mech Sci Eng. 2020;42:459. doi: 10.1007/s40430-020-02543-8
  • Nagaya G, Wakao Y, Abe A. Development of an in-wheel drive with advanced dynamic-damper mechanism. JSAE Rev. 2003;24(4):477–481. doi: 10.1016/S0389-4304(03)00077-8
  • Qin Y, He C, Shao X, et al. Vibration mitigation for in-wheel switched reluctance motor driven electric vehicle with dynamic vibration absorbing structures. J Sound Vib. 2018;419(1):249–267. doi: 10.1016/j.jsv.2018.01.010
  • Wu H, Zheng L, Li Y. Coupling effects in hub motor and optimization for active suspension system to improve the vehicle and the motor performance. J Sound Vib. 2020;482(1):1–18.
  • Liu M, Zhang Y, Huang J, et al. Optimization control for dynamic vibration absorbers and active suspensions of in-wheel-motor-driven electric vehicles. P I MECH ENG D-J AUT. 2020;234(9):2377–2392. doi: 10.1177/0954407020908667
  • Li Z, Zheng L, Ren Y, et al. Multi-objective optimization of active suspension system in electric vehicle with in-wheel-motor against the negative electromechanical coupling effects. Mech Syst Signal Process. 2019;116:545–565. doi: 10.1016/j.ymssp.2018.07.001
  • Long G, Ding F, Zhang N, et al. Regenerative active suspension system with residual energy for in-wheel motor driven electric vehicle. Appl Energy. 2020;260:114180. doi: 10.1016/j.apenergy.2019.114180
  • Wang Y, Li P, Ren G. Electric vehicles with in-wheel switched reluctance motors: coupling effects between road excitation and the unbalanced radial force. J Sound Vib. 2016;372:69–81. doi: 10.1016/j.jsv.2016.02.040
  • Smith MC. Synthesis of mechanical networks: the inerter. IEEE Trans Automat Contr. 2002;47:1648–1662. doi: 10.1109/TAC.2002.803532
  • Wang FC, Su WJ. Impact of inerter nonlinearities on vehicle suspension control. Veh Syst Dyn. 2008;46(7):575–595. doi: 10.1080/00423110701519031
  • Liu X, Jiang JZ, Titurus B, et al. Model identification methodology for fluid-based inerters. Mech Syst Signal Process. 2018;106:479–494. doi: 10.1016/j.ymssp.2018.01.018
  • Swift SJ, Smith MC, Glover AR, et al. Design and modelling of a fluid inerter. Int J Control. 2013;86(11):2035–2051. doi: 10.1080/00207179.2013.842263
  • Smith MC, Wang FC. Performance benefits in passive vehicle suspensions employing inerters. Veh Syst Dyn. 2004;42:235–257. doi: 10.1080/00423110412331289871
  • Lazar I, Neild S, Wagg D. Vibration suppression of cables using tuned inerter dampers. Eng Struct. 2016;122:62–71. doi: 10.1016/j.engstruct.2016.04.017
  • Luo J, Macdonald JH, Jiang JZ. Use of inerter-based vibration absorbers for suppressing multiple cable modes. Procedia Eng. 2017;199:1695–1700. doi: 10.1016/j.proeng.2017.09.370
  • Lewis TD, Jiang JZ, Neild SA, et al. Using an inerter-based suspension to improve both passenger comfort and track wear in railway vehicles. Veh Syst Dyn. 2020;58(3):472–493. doi: 10.1080/00423114.2019.1589535
  • Lewis TD, Li Y, Tucker GJ, et al. Improving the track friendliness of a four-axle railway vehicle using an inertance-integrated lateral primary suspension. Veh Syst Dyn. 2021;59(1):115–134. doi: 10.1080/00423114.2019.1664752
  • Jiang JZ, Matamoros-Sanchez AZ, Goodall RM, et al. Passive suspensions incorporating inerters for railway vehicles. Veh Syst Dyn. 2012;50(sup1):263–276. doi: 10.1080/00423114.2012.665166
  • Zhang SY, Jiang JZ, Neild SA. Passive vibration control: a structure–immittance approach. Proc R Soc A. 2017;473(2201):20170011. doi: 10.1098/rspa.2017.0011
  • Zhang SY, Zhu M, Li Y, et al. Ride comfort enhancement for passenger vehicles using the structure-immittance approach. Veh Syst Dyn. 2021;59(4):504–525. doi: 10.1080/00423114.2019.1694158
  • Guiggiani M. The science of vehicle dynamics: handling, braking, and ride of road and race cars. 2nd ed. Cham: Springer; 2018.
  • Smith MC, Swift SJ. Design of passive vehicle suspensions for maximal least damping ratio. Veh Syst Dyn. 2016;54(5):568–584. doi: 10.1080/00423114.2016.1145242
  • Sharp RS, Crolla DA. Road vehicle suspension system design – a review. Veh Syst Dyn. 1987;16(3):167–192. doi: 10.1080/00423118708968877
  • Gillespie TD. Fundamentals of vehicle dynamics. 1st ed. Warrendale, PA: Society of Automotive Engineers; 1992.
  • Schiehlen W. White noise excitation of road vehicle structures. Sadhana. 2006;31(4):487–503. doi: 10.1007/BF02716788
  • Bender EK. Optimum linear preview control with application to vehicle suspension. Trans ASME J Basic Eng. 1968;90(2):213–221. doi: 10.1115/1.3605082
  • White FM. Fluid mechanics. 7th ed. New York: McGraw Hill; 2011.
  • Wang FC, Hong MF, Lin TC. Designing and testing a hydraulic inerter. Proc Inst Mech Eng C J Mech Eng Sci. 2011;225(1):66–72. doi: 10.1243/09544062JMES2199
  • Robson JD. Road surface description and vehicle response. Int J Veh Des. 1979;1(1):25–35.