435
Views
6
CrossRef citations to date
0
Altmetric
Review

New insights into arginine and arginine-sparing effects of guanidinoacetic acid and citrulline in broiler diets

ORCID Icon & ORCID Icon

References

  • Abdulkarimi, R., M. H. Shahir, and M. Daneshyar. 2019. “Effects of Dietary Glutamine and Arginine Supplementation on Performance, Intestinal Morphology and Ascites Mortality in Broiler Chickens Reared under Cold Environment.” Asian-Australasian Journal of Animal Sciences 32 (1): 110–117.
  • Alexandratos, N., and J. Bruinsma. 2012. “World Agriculture Towards 2030/2050: The 2012 Revision”. FAO. Accessed 17 February 2021. http://www.fao.org/fileadmin/templates/esa/Global /world_ag_2030_50_2012_rev.pdf
  • Allerton, T. D., D. N. Proctor, J. M. Stephens, T. R. Dugas, G. Spielmann, and B. A. Irving. 2018. “L-Citrulline Supplementation: Impact on Cardiometabolic Health.” Nutrients 10 (7): 921. doi:https://doi.org/10.3390/nu10070921.
  • Amiri, M., H. A. Ghasemi, I. Hajikhodadadi, and A. H. K. Farahani. 2019. “Efficacy of Guanidinoacetic Acid at Different Dietary Crude Protein Levels on Growth Performance, Stress Indicators, Antioxidant Status, and Intestinal Morphology in Broiler Chickens Subjected to Cyclic Heat Stress.” Animal Feed Science and Technology 254: 114208. doi:https://doi.org/10.1016/j.anifeedsci.2019.114208.
  • Austic, R. E. 1973. “Conversion of Arginine to Proline in the Chick.” Journal of Nutrition 103 (7): 999–1007.
  • Austic, R. E., and M. C. Nesheim. 1970. “Role of Kidney Arginase in Variations of the Arginine Requirement of Chicks.” Journal of Nutrition 100 (7): 855–868.
  • Austic, R. E., and R. L. Scott. 1975. “Involvement of Food Intake in the Lysine-Arginine Antagonism in Chicks.” The Journal of Nutrition 105 (9): 1122–1131.
  • Aviagen. 2019. Ross Broiler Nutrition Specifications 2019. UK: Aviagen. Accessed 9 July 2021. https://en.aviagen.com/assets/Tech_Center/Ross_Broiler/RossBroilerNutritionSpecs2019-EN.pdf.
  • Awad, E. A., I. Zulkifli, A. F. Soleimani, F. L. Law, S. K. Ramiah, I. M. Mohamed-Yousif, E. A. Hussein, and E. S. Khalil. 2019. “Response of Broilers to Reduced-Protein Diets under Heat Stress Conditions.” World’s Poultry Science Journal 75 (4): 583–598.
  • Awad, E. A., M. Fadlullah, I. Zulkifli, A. S. Farjam, and L. T. Chwen. 2014. “Amino Acids Fortification of Low-Protein Diet for Broilers under Tropical Climate: Ideal Essential Amino Acids Profile.” Italian Journal of Animal Science 13 (2): 270–274.
  • Baker, D. H. 2005. “Comparative Nutrition and Metabolism: Explication of Open Questions with Emphasis on Protein and Amino Acids.” Proceedings of the National Academy of Sciences 102 (50): 17897–17902.
  • Baker, D. H., and Y. Han. 1994. “Ideal Amino Acid Profile for Chicks during the First Three Weeks Posthatching.” Poultry Science 73 (9): 1441–1447.
  • Ball, R. O., K. L. Urschel, and P. B. Pencharz. 2007. “Nutritional Consequences of Interspecies Differences in Arginine and Lysine Metabolism.” The Journal of Nutrition 137 (6): 1626S–1641S.
  • Balnave, D., and J. Barke. 2002. “Re-Evaluation of the Classical Dietary Arginine: Lysine Interaction for Modern Poultry Diets: A Review.” World’s Poultry Science Journal 58 (3): 275–289.
  • Bao, Y. 2020. “Amino Acid Nutrition and Chicken Gut Health.” World’s Poultry Science Journal 76 (3): 563–576.
  • Basoo, H., F. Khajali, E. A. Khoshoui, M. Faraji, and R. F. Wideman. 2012. “Re-evaluation of Arginine Requirements for Broilers Exposed to Hypobaric Condition during the 3-to 6-Week Period.” The Journal of Poultry Science 0110133. doi:https://doi.org/10.2141/jpsa.0110133.
  • Behrooj, N., F. Khajali, and H. Hassanpour. 2012. “Feeding Reduced-protein Diets to Broilers Subjected to Hypobaric Hypoxia Is Associated with the Development of Pulmonary Hypertension Syndrome.” British Poultry Science 53 (5): 658–664. doi:https://doi.org/10.1080/00071668.2012.727082.
  • Bequette, B. J. 2003. “Amino Acid Metabolism in Animals.” In Amino Acids in Animal Nutrition, edited by J. P. F. D’Mello. Wallingford, Oxon OX10 8D, 87–101. UK: CABI Publishing.
  • Bodle, B. C., C. Alvarado, R. B. Shirley, Y. Mercier, and J. T. Lee. 2018. “Evaluation of Different Dietary Alterations in Their Ability to Mitigate the Incidence and Severity of Woody Breast and White Striping in Commercial Male Broilers.” Poultry Science 97 (9): 3298–3310.
  • Bortoluzzi, C., S. J. Rochell, and T. J. Applegate. 2018. “Threonine, Arginine, and Glutamine: Influences on Intestinal Physiology, Immunology, and Microbiology in Broilers.” Poultry Science 97 (3): 937–945.
  • Brake, J., and D. Balnave. 1995. “Essentiality of Arginine in Broilers during Hot Weather.” Proceedings of the 12th Annual Biokyowa Amino Acid Council Meeting, St Louis, Mo, USA, October 3- 5.
  • Brake, J., D. Balnave, and J. J. Dibner. 1998. “Optimum Dietary Arginine: Lysine Ratio for Broiler Chickens Is Altered during Heat Stress in Association with Changes in Intestinal Uptake and Dietary Sodium Chloride.” British Poultry Science 39 (5): 639–647. doi:https://doi.org/10.1080/00071669888511.
  • Brosnan, J. T., E. P. Wijekoon, L. Warford-Woolgar, N. L. Trottier, M. E. Brosnan, J. A. Brunton, and R. F. Bertolo. 2009. “Creatine Synthesis Is A Major Metabolic Process in Neonatal Piglets and Has Important Implications for Amino Acid Metabolism and Methyl Balance.” The Journal of Nutrition 139 (7): 1292–1297.
  • Burton, E. M., and P. W. Waldroup. 1979. “Arginine and Lysine Needs of Young Broiler Chicks.” Nutrition Report International 19: 607–614.
  • Carvalho, F. B. D., J. H. Stringhini, M. S. Matos, R. M. Jardim Filho, M. B. Café, N. S. M. Leandro, and M. A. Andrade. 2012. “Performance and Nitrogen Balance of Laying Hens Fed Increasing Levels of Digestible Lysine and Arginine.” Revista Brasileira De Zootecnia 41 (10): 2183–2188.
  • Castro, F. L. S., S. Su, H. Choi, E. Koo, and W. K. Kim. 2019. “L-arginine Supplementation Enhances Growth Performance, Lean Muscle, and Bone Density but Not Fat in Broiler Chickens.” Poultry Science 98 (4): 1716–1722. doi:https://doi.org/10.3382/ps/pey504.
  • Centraal Veevoederbureau (CVB). 2018. Standardized Ileal Digestible Arginine Requirement for Broilers. The Netherlands: CVB.
  • Chamruspollert, G., G. M. Pesti, and R. I. Bakalli. 2004b. “Influence of Temperature on the Arginine and Methionine Requirements of Young Broiler Chicks.” Journal of Applied Poultry Research 13 (4): 628–638.
  • Chamruspollert, M., G. M. Pesti, and R. I. Bakalli. 2004a. “Chick Responses to Dietary Arginine and Methionine Levels at Different Environmental Temperatures.” British Poultry Science 45 (1): 93–100.
  • Choi, Y. H., M. Furuse, J. I. Okumura, and D. M. Denbow. 1994. “Nitric Oxide Controls Feeding Behavior in the Chicken.” Brain Research 654 (1): 163–166.
  • Chowdhury, V. S., A. Shigemura, E. Erwan, K. Ito, M. A. Bahry, T. V. Phuong, and M. Furuse. 2015. “Oral Administration of L-citrulline, but Not L-arginine or L-ornithine, Acts as A Hypothermic Agent in Chicks.” The Journal of Poultry Science 52: 331–335.
  • Chowdhury, V. S., G. Han, M. A. Bahry, P. V. Tran, P. H. Do, H. Yang, and M. Furuse. 2017. “L-Citrulline Acts as Potential Hypothermic Agent to Afford Thermotolerance in Chicks.” Journal of Thermal Biology 69: 163–170.
  • Chrystal, P. V., A. F. Moss, A. Khoddami, V. D. Naranjo, P. H. Selle, and S. Y. Liu. 2020b. “Effects of Reduced Crude Protein Levels, Dietary Electrolyte Balance, and Energy Density on the Performance of Broiler Chickens Offered Maize-Based Diets with Evaluations of Starch, Protein, and Amino Acid Metabolism.” Poultry Science 99 (3): 1421–1431.
  • Chrystal, P. V., S. Greenhalgh, P. H. Selle, and S. Y. Liu. 2020a. “Facilitating the Acceptance of Tangibly Reduced-Crude Protein Diets for Chicken-Meat Production.” Animal Nutrition 6 (3): 247–257.
  • Cobb-Vantress. 2018. Cobb 500 Broiler Performance and Nutrition Supplement. Accessed 9 July 2021. https://www.cobb-vantress.com/assets/Cobb-Files/product-guides/bdc20a5443/70dec630-0abf-11e9-9c88-c51e407c53ab.pdf
  • Coleman, J. W. 2001. “Nitric Oxide in Immunity and Inflammation.” International Immunopharmacology 1 (8): 1397–1406. doi:https://doi.org/10.1016/S1567-5769(01)00086-8.
  • Corzo, A. 2007. “Valine and Isoleucine: Their Importance in Broiler Feed Formulation.” Aminonews 9: 15–21.
  • Corzo, A. 2012. “Determination of the Arginine, Tryptophan, and Glycine Ideal-Protein Ratios in High-Yield Broiler Chicks.” Journal of Applied Poultry Research 21 (1): 79–87.
  • Corzo, A., J. Lee, J. I. Vargas, M. Silva, and W. J. Pacheco. 2021. “Determination of the Optimal Digestible Arginine to Lysine Ratio in Ross 708 Male Broilers”. Journal of Applied Poultry Research 30 (1): 100136. doi:https://doi.org/10.1016/j.japr.2020.100136.
  • Corzo, A., C. A. Fritts, M. T. Kidd, and B. J. Kerr. 2005. “Response of Broiler Chicks to Essential and Non-Essential Amino Acid Supplementation of Low Crude Protein Diets.” Animal Feed Science and Technology 118 (3–4): 319–327. doi:https://doi.org/10.1016/j.anifeedsci.2004.11.007.
  • Corzo, A., E. T. Moran Jr, and D. Hoehler. 2003. “Arginine Need of Heavy Broiler Males: Applying the Ideal Protein Concept.” Poultry Science 82 (3): 402–407.
  • Corzo, A., and M. T. Kidd. 2003. “Arginine Needs of the Chick and Growing Broiler.” International Journal of Poultry Science 2 (6): 379–382.
  • Costa, F. G. P., H. S. Rostagno, R. S. Toledo, and L. F. T. Albino. 2001. “Effect on the Performance and Carcass Quality of Broiler 3 to 6 Weeks of Age under High Temperature Conditions.” Revista Brasileira De Zootecnia 30 (6): 2021–2025.
  • Dai, Z. L., X. L. Li, P. B. Xi, J. Zhang, G. Wu, and W. Y. Zhu. 2012. “Regulatory Role for L-arginine in the Utilization of Amino Acids by Pig Small-Intestinal Bacteria.” Amino Acids 43 (1): 233–244. doi:https://doi.org/10.1007/s00726-011-1067-z.
  • Dao, H. T., N. K. Sharma, E. J. Bradbury, and R. A. Swick. 2021. “Response of Meat Chickens to Different Sources of Arginine in Low‐Protein Diets.” Journal of Animal Physiology and Animal Nutrition 105: 731–746.
  • de Carvalho, F. B., J. H. Stringhini, M. S. Matos, M. B. Café, N. S. M. Leandro, N. A. Gomes, E. S. Santana, and R. D. M. Jardim Filho. 2015. “Egg Quality of Hens Fed Different Digestible Lysine and Arginine Levels.” Brazilian Journal of Poultry Science 17 (1): 63–68.
  • Dean, D. W., T. D. Bidner, and L. L. Southern. 2006. “Glycine Supplementation to Low Protein, Amino Acid-Supplemented Diets Supports Optimal Performance of Broiler Chicks.” Poultry Science 85 (2): 288–296. doi:https://doi.org/10.1093/ps/85.2.288.
  • DeGroot, A. 2014. “Efficacy of Dietary Guanidinoacetic Acid in Broiler Chicks”. Master diss., University of Illinois.
  • DeGroot, A. A., U. Braun, and R. N. Dilger. 2018. “Efficacy of Guanidinoacetic Acid on Growth and Muscle Energy Metabolism in Broiler Chicks Receiving Arginine-Deficient Diets.” Poultry Science 97 (3): 890–900.
  • Dilger, R. N., K. Bryant-Angeloni, R. L. Payne, A. Lemme, and C. M. Parsons. 2013. “Dietary Guanidino Acetic Acid Is an Efficacious Replacement for Arginine for Young Chicks.” Poultry Science 92 (1): 171–177.
  • EFSA (the European Food Safety Authority). 2009. “Scientific Opinion of the Panel on Additives and Products or Substances Used in Animal Feed (FEEDAP) on A Request from the European Commision on the Safety and Efficacy of CreaminoTM (Guanidinoacetic Acid) as Feed Additive for Chickens for Fattening.” EFSA Journal 988: 1–30.
  • El-Hattab, A. W., L. T. Emrick, W. J. Craigen, and F. Scaglia. 2012. “Citrulline and Arginine Utility in Treating Nitric Oxide Deficiency in Mitochondrial Disorders.” Molecular Genetics and Metabolism 107 (3): 247–252.
  • Esser, A. F. G., D. R. M. Gonçalves, A. Rorig, A. B. Cristo, R. Perini, and J. I. M. Fernandes. 2017. “Effects of Guanidionoacetic Acid and Arginine Supplementation to Vegetable Diets Fed to Broiler Chickens Subjected to Heat Stress before Slaughter.” Revista Brasileira De Ciência Avícola 19 (3): 429–436.
  • Faria Filho, D. D., D. M. B. Campos, K. A. Alfonso-Torres, B. S. Vieira, P. S. Rosa, A. M. Vaz, M. Macari, and R. L. Furlan. 2007. “Protein Levels for Heat-Exposed Broilers: Performance, Nutrients Digestibility, and Energy and Protein Metabolism.” International Journal of Poultry Science 6 (3): 187–194.
  • Fernandes, J. I. M., and A. E. Murakami. 2010. “Arginine Metabolism in Uricotelic Species.” Acta Scientiarum. Animal Sciences 32 (4): 357–366.
  • Fernandes, J. I. M., A. E. Murakami, E. N. Martins, M. I. Sakamoto, and E. R. M. Garcia. 2009. “Effect of Arginine on the Development of the Pectoralis Muscle and the Diameter and the Protein: Deoxyribonucleic Acid Rate of Its Skeletal Myofibers in Broilers.” Poultry Science 88 (7): 1399–1406.
  • Fouad, A. M., H. K. El-Senousey, X. J. Yang, and J. H. Yao. 2013. “Dietary L-arginine Supplementation Reduces Abdominal Fat Content by Modulating Lipid Metabolism in Broiler Chickens.” Animal 7 (8): 1239–1245.
  • Gottardo, E. T., A. M. Burin, B. V. Lemke, A. M. Silva, C. L. B. Pasa, and J. I. M. Fernandes. 2017. “Immune Response in Eimerria Sp. And E. Coli Chalenged Birds.” Austral Journal of Veterinary Sciences 49: 175–184.
  • Green, S. J., R. M. Crawford, J. T. Hockmeyer, M. S. Meltzer, and C. A. Nacy. 1990. “Leishmania Major Amastigotes Initiate the L-arginine-dependent Killing Mechanism in IFN-gamma-stimulated Macrophages by Induction of Tumor Necrosis Factor-Alpha.” The Journal of Immunology 145 (12): 4290–4297.
  • Greenhalgh, S., B. V. McInerney, L. R. McQuade, P. V. Chrystal, A. Khoddami, M. A. Zhuang, S. Y. Liu, and P. H. Selle. 2020b. “Capping Dietary Starch: Protein Ratios in Moderately Reduced Crude Protein, Wheat-based Diets Showed Promise but Further Reductions Generated Inferior Growth Performance in Broiler Chickens from 7 to 35 Days Post-Hatch.” Animal Nutrition 6 (2): 168–178.
  • Greenhalgh, S., P. V. Chrystal, P. H. Selle, and S. Y. Liu. 2020a. “Reduced-Crude Protein Diets in Chicken-Meat Production: Justification for an Imperative.” World’s Poultry Science Journal 76 (3): 537–548.
  • Grimble, G. K. 2007. “Adverse Gastrointestinal Effects of Arginine and Related Amino Acids.” The Journal of Nutrition 137 (6): 1693S–1701S.
  • He, W., P. Li, and G. Wu. 2021. “Amino Acid Nutrition and Metabolism in Chickens”. In Amino Acids in Nutrition and Health: Amino Acids in the Nutrition of Companion, Zoo and Farm Animals, edited by W. Guoyao, 109–131. Cham, Switzerland: Springer Nature Switzerland AG. doi: https://doi.org/10.1007/978-3-030-54462-1_7.
  • Heger, J., J. Zelenka, V. Machander, C. De La Cruz, M. Lešták, and D. Hampel. 2014. “Effects of Guanidinoacetic Acid Supplementation to Broiler Diets with Varying Energy Content.” Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis 62 (3): 477–485.
  • Hilliar, M., G. Hargreave, C. K. Girish, R. Barekatain, S. B. Wu, and R. A. Swick. 2020. “Using Crystalline Amino Acids to Supplement Broiler Chicken Requirements in Reduced Protein Diets.” Poultry Science 99 (3): 1551–1563.
  • Ikeda, M. 2003. “Amino Acid Production Processes.” Advances in Biochemical Engineering/Biotechnology 79: 1–35.
  • Jahanian, R. 2009. “Immunological Responses as Affected by Dietary Protein and Arginine Concentrations in Starting Broiler Chicks.” Poultry Science 88 (9): 1818–1824.
  • Keshavarz, K., and H. L. Fuller. 1971a. “Relationship of Arginine and Methionine in the Nutrition of the Chick and the Significance of Creatine Biosynthesis in Their Interaction.” The Journal of Nutrition 101 (2): 217–222.
  • Keshavarz, K., and H. L. Fuller. 1971b. “Relationship of Arginine and Methionine to Creatine Formation in Chicks.” The Journal of Nutrition 101 (7): 855–862.
  • Khajali, F., A. Lemme, and M. Rademacher-Heilshorn. 2020. “Guanidinoacetic Acid as A Feed Supplement for Poultry.” World’s Poultry Science Journal 76 (2): 270–291. doi:https://doi.org/10.1080/00439339.2020.1716651.
  • Khajali, F., H. Basoo, and M. Faraji. 2013. “Estimation of Arginine Requirements for Male Broilers Grown at High Altitude from One to Twenty-one Days of Age.” Journal of Agricultural Science and Technology 15: 911–917.
  • Khajali, F., and R. F. Wideman. 2010. “Dietary Arginine: Metabolic, Environmental, Immunological and Physiological Interrelationships.” World’s Poultry Science Journal 66 (4): 751–766.
  • Khajali, F., and R. F. Wideman. 2016. “Nutritional Approaches to Ameliorate Pulmonary Hypertension in Broiler Chickens.” Journal of Animal Physiology and Animal Nutrition 100 (1): 3–14. doi:https://doi.org/10.1111/jpn.2016.100.issue-1.
  • Klose, A. A., and H. J. Almquist. 1940. “The Ability of Citrulline to Replace Arginine in the Diet of the Chick.” Journal of Biological Chemistry 135: 153–155.
  • Kodambashi Emami, N., A. Golian, D. D. Rhoads, and M. Danesh Mesgaran. 2017. “Interactive Effects of Temperature and Dietary Acid on Nutritional and Physiological Responses in Supplementation of Arginine or Guanidinoacetic Male Broiler Chickens.” Bristish Poultry Science 58 (1): 87–94. doi:https://doi.org/10.1080/00071668.2016.1257779.
  • Kwak, H., R. E. Austic, and R. R. Dietert. 1999. “Influence of Dietary Arginine Concentration on Lymphoid Organ Growth in Chickens.” Poultry Science 78 (11): 1536–1541.
  • Laika, M., and R. Jahanian. 2017. “Increase in Dietary Arginine Level Could Ameliorate Detrimental Impacts of Coccidial Infection in Broiler Chickens.” Livestock Science 195: 38–44.
  • Lassala, A., F. W. Bazer, T. A. Cudd, P. Li, X. Li, M. C. Satterfield, T. E. Spencer, and G. Wu. 2009. “Intravenous Administration of L-Citrulline to Pregnant Ewes Is More Effective than L-Arginine for Increasing Arginine Availability in the Fetus.” The Journal of Nutrition 139 (4): 660–665. doi:https://doi.org/10.3945/jn.108.102020.
  • Law, F. L., Z. Idrus, A. Soleimani Farjam, L. Juan Boo, and E. A. Awad. 2019. “Effects of Protease Supplementation of Low Protein And/or Energy Diets on Growth Performance and Blood Parameters in Broiler Chickens under Heat Stress Condition.” Italian Journal of Animal Science 18 (1): 679–689.
  • Lee, J. E., R. E. Austic, S. A. Naqi, K. A. Golemboski, and R. R. Dietert. 2002. “Dietary Arginine Intake Alters Avian Leukocyte Population Distribution during Infectious Bronchitis Challenge.” Poultry Science 81 (6): 793–798.
  • Leeson, S., and J. D. Summers. 2001. Nutrition of the Chicken. Guelph, Canadá: Department of Animal & Poultry Science, University of Guelph.
  • Lemme, A., M. Rademacher-Heilshorn, R. N. Dilger, C. Scharch, and U. Braun. 2018. “Arginine Sparing Potential of Guanidinoacetic Acid in Broiler Nutrition.” Poultry Science 97 (E–supplement 2): 101.
  • Lemme, A., R. Gobbi, A. Helmbrecht, J. D. Van Der Klis, J. Firman, J. Jankowski, and K. Kozlowski. 2010b. “Use of Guanidino Acetic Acid in All-Vegetable Diets for Turkeys”. Proceedings of the 4th Turkey Science and Production Conference, Turkey (57–61).
  • Lemme, A., R. Gobbi, and E. Esteve-Garcia. 2010a. “Effectiveness of Creatine Sources on Performance of Broilers at Deficient or Adequate Methionine Supply”. Poster presented at the 13th European Poultry Conference, Tours, France, August 23- 27.
  • Liu, F., E. M. De Ruyter, R. Z. Athorn, C. J. Brewster, D. J. Henman, R. S. Morrison, R. J. Smits, J. J. Cottrell, and F. R. Dunshea. 2019. “Effects of L‐citrulline Supplementation on Heat Stress Physiology, Lactation Performance and Subsequent Reproductive Performance of Sows in Summer.” Journal of Animal Physiology and Animal Nutrition 103 (1): 251–257. doi:https://doi.org/10.1111/jpn.13028.
  • Liu, S. Y., and P. H. Selle. 2017. “Starch and Protein Digestive Dynamics in Low-Protein Diets Supplemented with Crystalline Amino Acids.” Animal Production Science 57 (11): 2250–2256.
  • Macari, M., R. L. Furlan, and E. Gonzales. 2002. Fisiologia Aviária Aplicada a Frangos De Corte. Jaboticabal: FUNEP/UNESP.
  • Majdeddin, M., U. Braun, A. Lemme, A. Golian, H. Kermanshahi, S. De Smet, and J. Michiels. 2020. “Guanidinoacetic Acid Supplementation Improves Feed Conversion in Broilers Subjected to Heat Stress Associated with Muscle Creatine Loading and Arginine Sparing.” Poultry Science 99 (9): 4442–4453.
  • McCarty, M. F. 2010. “Potential Utility of Full-Spectrum Antioxidant Therapy, Citrulline, and Dietary Nitrate in the Management of Sickle Cell Disease.” Medical Hypotheses 74 (6): 1055–1058.
  • Michiels, J., L. Maertens, J. Buyse, A. Lemme, M. Rademacher, N. A. Dierick, and S. De Smet. 2012. “Supplementation of Guanidino Acetic Acid to Broiler Diets: Effects on Performance Carcass Characteristics, Meat Quality and Energy Metabolism.” Poultry Science 91 (2): 402–412. doi:https://doi.org/10.3382/ps.2011-01585.
  • Morris, S. M., Jr. 2016. “Arginine Metabolism Revisited.” The Journal of Nutrition 146 (12): 2579S–2586S.
  • Moss, A. 2020. Database of the Nutrient Content of Australian Feed Ingredients (Publication No. 20-078). Wagga Wagga, Australia: AgriFutures Australia. Accessed 17 February 2021. https://agrifutures.com.au/wp-content/uploads/2020/09/20-078.pdf.
  • Namroud, N. F., M. Shivazad, and M. Zaghari. 2008. “Effects of Fortifying Low Crude Protein Diet with Crystalline Amino Acids on Performance, Blood Ammonia Level, and Excreta Characteristics of Broiler Chicks.” Poultry Science 87 (11): 2250–2258. doi:https://doi.org/10.3382/ps.2007-00499.
  • National Research Council. 1994. Nutrient Requirements of Poultry. 9th ed. Washington DC: National Academy Press.
  • Nguyen, L. T., G. Han, H. Yang, H. Ikeda, H. M. Eltahan, V. S. Chowdhury, and M. Furuse. 2019. “Dried Watermelon Rind Mash Diet Increases Plasma L-citrulline Level in Chicks.” The Journal of Poultry Science 56 (1): 65–70.
  • Nguyen, L. T. N., H. M. Eltahan, C. V. Pham, G. Han, V. S. Chowdhury, and M. Furuse. 2020. “Oral Administration of Watermelon Rind Extract to Induce Hypothermia in Chicks.” The Journal of Poultry Science 57 (1): 37–44.
  • Novak, C., H. M. Yakout, and S. E. Scheideler. 2006. “The Effect of Dietary Protein Level and Total Sulfur Amino Acid: Lysine Ratio on Egg Production Parameters and Egg Yield in Hy-Line W-98 Hens.” Poultry Science 85 (12): 2195–2206.
  • Ospina-Rojas, I. C., A. E. Murakami, C. R. A. Duarte, C. Eyng, C. A. L. Oliveira, and V. Janeiro. 2014. “Valine, Isoleucine, Arginine and Glycine Supplementation of Low-protein Diets for Broiler Chickens during the Starter and Grower Phases.” British Poultry Science 55 (6): 766–773.
  • Ostojic, S. M., B. Niess, M. Stojanovic, and M. Obrenovic. 2013. “Creatine Metabolism and Safety Profiles after Six-week Oral Guanidinoacetic Acid Administration in Healthy Humans.” International Journal of Medical Sciences 10 (2): 141–147.
  • Qureshi, M. A. 2003. “Avian Macrophage and Immune Response: An Overview.” Poultry Science 82 (5): 691–698.
  • Ringel, J., A. Lemme, A. Knox, J. McNab, and M. S. Redshaw. 2007. “Effects of Graded Levels of Creatine and Guanidino Acetic Acid in Vegetable-Based Diets on Performance and Biochemical Parameters in Muscle Tissue”. Proceedings of the 16th European Symposium on Poultry Nutrition, Strasbourg, France, August 26- 30(387–390).
  • Rostagno, H. S., L. F. T. Albino, J. L. Donzele, P. C. Gomes, R. F. de Oliviera, D. C. Lopes, A. S. Ferreira, et al. 2017. Brazilian Tables for Poultry and Swine, Feedstuff Composition and Nutritional Requirements. 4th ed. Vicosa, Brazil: Universidade Federal de Vicosa.
  • Rueda, E., C. Michelangeli, and F. Gonzalez-Mujica. 2003. “L-canavanine Inhibits L-arginine Uptake by Broiler Chicken Intestinal Brush Border Membrane Vesicles.” British Poultry Science 44 (4): 620–625.
  • Schutte, J. B., and J. De Jong. 1999. “Ideal Amino Acid Profile for Poultry.” Cahiers Options Méditerranéennes (CIHEAM) 37: 259–263.
  • Schwedhelm, E., R. Maas, R. Freese, D. Jung, Z. Lukacs, A. Jambrecina, W. Spickler, F. Schulze, and R. H. Böger. 2008. “Pharmacokinetic and Pharmacodynamic Properties of Oral L‐citrulline and L‐arginine: Impact on Nitric Oxide Metabolism.” British Journal of Clinical Pharmacology 65 (1): 51–59.
  • Selle, P. H., J. C. De Paula Dorigam, A. Lemme, P. V. Chrystal, and S. Y. Liu. 2020. “Synthetic and Crystalline Amino Acids: Alternatives to Soybean Meal in Chicken-Meat Production.” Animals 10 (4): 729. doi:https://doi.org/10.3390/ani10040729.
  • Siegert, W., H. Ahmadi, and M. Rodehutscord. 2015. “Meta-Analysis of the Influence of Dietary Glycine and Serine, with Consideration of Methionine and Cysteine, on Growth and Feed Conversion of Broilers.” Poultry Science 94 (8): 1853–1863.
  • Silva, J. H. V., J. Jordão Filho, E. L. Silva, and M. L. G. Ribeiro. 2005. “Por Que Formular Dietas Para Poedeiras Com Base No Conceito De Proteína Ideal.” Revista Ave World 3 (3): 50–57.
  • Srinongkote, S., M. Smriga, and Y. Toride. 2004. “Diet Supplied with L-lysine and L-arginine during Chronic Stress of High Stock Density Normalizes Growth of Broilers.” Animal Science Journal 75 (4): 339–343.
  • Stadelmann, B., K. Hanevik, M. K. Andersson, O. Bruserud, and S. G. Svärd. 2013. “The Role of Arginine and Arginine-metabolizing Enzymes during Giardia-host Cell Interactions in Vitro.” BMC Microbiology 13 (1): 256. doi:https://doi.org/10.1186/1471-2180-13-256.
  • Stuehr, D. J., and C. F. Nathan. 1989. “Nitric Oxide: A Macrophage Product Responsible for Cystitis and Respiratory Inhibition in Tumor Target Cells.” Journal of Experimental Medicine 169 (5): 1543–1555.
  • Su, C. L., and R. E. Austic. 1999. “The Recycling of L-citrulline to L-arginine in A Chicken Macrophage Cell Line.” Poultry Science 78 (3): 353–355.
  • Sung, Y. J., J. H. Hotchkiss, R. E. Austic, and R. R. Dietert. 1991. “L‐arginine‐Dependent Production of A Reactive Nitrogen Intermediate by Macrophages of A Uricotelic Species.” Journal of Leukocyte Biology 50 (1): 49–56.
  • Swick, R. A., and D. C. Creswell. 2019. “Economics of Low Protein Broiler Diets: A Formulation Exercise”. Proceedings of 30th Australian Poultry Science Symposium, Sydney, Australia, February 17- 20.
  • Tabatabaei Yazdi, F., A. Golian, H. Zarghi, and M. Varidi. 2017. “Effect of Wheat-soy Diet Nutrient Density and Guanidine Acetic Acid Supplementation on Performance and Energy Metabolism in Broiler Chickens.” Italian Journal of Animal Science 16 (4): 593–600. doi:https://doi.org/10.1080/1828051X.2017.1305260.
  • Tamir, H., and S. Ratner. 1963a. “A Study of Ornithine, Citrulline and Arginine Synthesis in Growing Chicks.” Archives of Biochemistry and Biophysics 102 (2): 259–269.
  • Tamir, H., and S. Ratner. 1963b. “Enzymes of Arginine Metabolism in Chicks.” Archives of Biochemistry and Biophysics 102 (2): 249–258.
  • Tan, J., T. J. Applegate, S. Liu, Y. Guo, and S. D. Eicher. 2014. “Supplemental Dietary L-arginine Attenuates Intestinal Mucosal Disruption during A Coccidial Vaccine Challenge in Broiler Chickens.” British Journal of Nutrition 112 (7): 1098–1109.
  • Tan, J. Z., Y. M. Guo, T. J. Applegate, E. C. Du, and X. Zhao. 2015. “Dietary L‐arginine Modulates Immunosuppression in Broilers Inoculated with an Intermediate Strain of Infectious Bursa Disease Virus.” Journal of the Science of Food and Agriculture 95 (1): 126–135. doi:https://doi.org/10.1002/jsfa.6692.
  • Tedesco, T. A., S. A. Benford, R. C. Foster, and L. A. Barness. 1984. “Free Amino Acids in Citrullus Vulgaris (Watermelon).” Pediatrics 73 (6): 879.
  • Tossenberger, J., M. Rademacher, K. Németh, V. Halas, and A. Lemme. 2016. “Digestibility and Metabolism of Dietary Guanidino Acetic Acid Fed to Broilers.” Poultry Science 95 (9): 2058–2067.
  • Visser, J. J., and K. Hoekman. 1994. “Arginine Supplementation in the Prevention and Treatment of Osteoporosis.” Medical Hypotheses 43 (5): 339–342. doi:https://doi.org/10.1016/0306-9877(94)90113-9.
  • Walker, J. B. 1979. “Creatine: Biosynthesis, Regulation, and Function.” Advances in Enzymology and Related Areas of Molecular Biology 50 (177): 177–242.
  • Wang, C., M. Xie, W. Huang, J. J. Xie, J. Tang, and S. S. Hou. 2013. “Arginine Requirements of White Pekin Ducks from 1 to 21 Days of Age.” Poultry Science 92 (4): 1007–1010.
  • Wiesinger, H. 2001. “Arginine Metabolism and the Synthesis of Nitric Oxide in the Nervous System.” Progress in Neurobiology 64 (4): 365–391.
  • Wietlake, A. W., A. G. Hogan, B. L. O’Dell, and H. L. Kempster. 1954. “Amino Acid Deficiencies of Casein as A Source of Protein for the Chick.” Journal of Nutrition 52 (2): 311–323.
  • Wijnands, K. A. P., H. Vink, J. J. Briedé, E. E. van Faassen, W. H. Lamers, W. A. Buurman, and M. Poeze. 2012. “Citrulline A More Suitable Substrate than Arginine to Restore NO Production and the Microcirculation during Endotoxemia.” PloS One 7 (5): e37439. doi:https://doi.org/10.1371/journal.pone.0037439.
  • Wu, G. 2014. “Dietary Requirements of Synthesizable Amino Acids by Animals: A Paradigm Shift in Protein Nutrition.” Journal of Animal Science and Biotechnology 5 (1): 1–12.
  • Wu, G. Y., and S. M. Morris. 1998. “Arginine Metabolism: Nitric Oxide and Beyond.” Biochemical Journal 336 (1): 1–17.
  • Wyss, M., and R. Kaddurah-Daouk. 2000. “Creatine and Creatinine Metabolism.” Physiological Reviews 80 (3): 1107–1213.
  • Xie, Q. W., and C. Nathan. 1994. “The High Out-put Nitric Oxide Pathway: Role and Regulation.” Journal of Leukocyte Biology 56 (5): 576–582.
  • Yahav, S., A. Straschnow, I. Plavnik, and S. Hurwitz. 1997. “Blood System Response of Chickens to Changes in Environmental Temperature.” Poultry Science 76 (4): 627–633.
  • Zaman, Q. U., T. Mushtaq, H. Nawaz, M. A. Mirza, S. Mahmood, T. Ahmad, M. E. Babar, and M. M. H. Mushtaq. 2008. “Effect of Varying Dietary Energy and Protein on Broiler Performance in Hot Climate.” Animal Feed Science and Technology 146 (3–4): 302–312.
  • Zampiga, M., L. Laghi, M. Petracci, C. Zhu, A. Meluzzi, S. Dridi, and F. Sirri. 2018. “Effect of Dietary Arginine to Lysine Ratios on Productive Performance, Meat Quality, Plasma and Muscle Metabolomics Profile in Fast-Growing Broiler Chickens.” Journal of Animal Science and Biotechnology 9 (1): 1–14.
  • Zhang, B., Z. Lv, H. Li, S. Guo, D. Liu, and Y. Guo. 2017. “Dietary L-arginine Inhibits Intestinal Clostridium Perfringens Colonisation and Attenuates Intestinal Mucosal Injury in Broiler Chickens.” British Journal of Nutrition 118 (5): 321–332.
  • Zhang, B., Z. Lv, Z. Li, W. Wang, G. Li, and Y. Guo. 2018. “Dietary L-arginine Supplementation Alleviates the Intestinal Injury and Modulates the Gut Microbiota in Broiler Chickens Challenged by Clostridium Perfringens.” Frontiers in Microbiology 9: 1716. doi:https://doi.org/10.3389/fmicb.2018.01716.
  • Zhu, W., W. Jiang, and L. Y. Wu. 2014. “Dietary L‐arginine Supplement Alleviates Hepatic Heat Stress and Improves Feed Conversion Ratio of Pekin Ducks Exposed to High Environmental Temperature.” Journal of Animal Physiology and Animal Nutrition 98 (6): 1124–1131.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.