556
Views
0
CrossRef citations to date
0
Altmetric
Review

Skull and long bones – Forensic DNA techniques for historic shipwreck human remains

ORCID Icon & ORCID Icon
Pages 367-391 | Received 06 Sep 2022, Accepted 08 Feb 2023, Published online: 01 Mar 2023

References

  • Guareschi E, Tobe S, Nicholls P, Magni P. Taphonomy and diagenesis of human bone in underwater archaeology: a review of the current status and the proposal of Post-Mortem Submersion Interval (PMSI) as a potential forensic application. J Marit Archaeol. 2021;16:57–75. doi:10.1007/s11457-020-09286-6
  • Hagelberg E, Clegg JB. Isolation and characterization of DNA from archaeological bone. Proc Biol Sci. 1991;244(1309):45–50.
  • Yahya P, Gaudieri S, Franklin D. DNA analysis of human skeletal remains associated with the Batavia mutiny of 1629. Perth, Australia: Western Australian Museum; 2010.
  • Simonds A. Who are you? An archaeological examination of the human remains associated with Vasa. Grrenville, North Carolina: East Carolina University; 2017.
  • Defence AG. Mystery of HMAS Sydney II sailor solved. Defence news. 2021.
  • Hilliard J. Dead man may tell a tale: cape cod museum tests DNA from pirate ship. The Boston Globe. 2018.
  • Marchant J. Human skeleton found on famed Antikythera shipwreck. Nat. 2016;537(7621):462–463. doi:10.1038/537462a
  • Mays S, Ogden A, Montgomery J, Vincent S, Battersby W, Taylor G. New light on the personal identification of a skeleton of a member of Sir John Franklin’s last expedition to the Arctic, 1845. J Archaeol Sci. 2011;38:1571–1582. doi:10.1016/j.jas.2011.02.022
  • Stenton D, Keenleyside A, Trepkov D, Park R. Faces from the Franklin expedition? Craniofacial reconstructions of two members of the 1845 northwest passage expedition. Polar Record. 2015;52(1) 1–6.
  • Stenton D, Fratpietro S, Keenleyside A, Park R. DNA identification of a sailor from the 1845 Franklin northwest passage expedition 57. Polar Record; 2021. p. 1–5.
  • UNESCO, editor Convention on the Protection of the Underwater Cultural Heritage. Convention on the protection of the underwater cultural heritage. Paris: UNESCO; 2001.
  • Delgado J. Encyclopedia of underwater and maritime archaeology. London: British Museum Press; 1997.
  • Museum Act 1959. Sect. 11, (1959).
  • Museum Act 1969, (1969).
  • Maritime Archaeology Act 1973, (1973).
  • Underwater Cultural Heritage Act, (2018).
  • Hughes-Stamm S. DNA typing methods for highly degraded samples. Gold Coast (Australia): Bond University; 2013.
  • Hagelberg E, Sykes B, Hedges R. Ancient bone DNA amplified. Nat. 1989;342(6249):485. doi:10.1038/342485a0
  • Zouganelis GD, Ogden R, Nahar N, Runfola V, Bonab M, Ardalan A, Radford D, Barnett R, Larson G, Hildred A, et al. An old dog and new tricks: genetic analysis of a Tudor dog recovered from the Mary Rose wreck. Forensic Sci Int. 2014;245:51–57. doi:10.1016/j.forsciint.2014.10.001
  • Hutchinson WF, Culling M, Orton DC, Hänfling B, Lawson Handley L, Hamilton-Dyer S, O’Connell TC, Richards MP, Barrett JH, Hutchinson WF, et al. The globalization of naval provisioning: ancient DNA and stable isotope analyses of stored cod from the wreck of the Mary Rose, AD 1545. R Soc Open Sci. 2015;2(9):150199. doi:10.1098/rsos.150199
  • Ralph E. Cape Gelidonya: a Bronze Age Shipwreck, New Series. In: Bass G, editor. Carbon-14 dates for wood. Philadelphia, PA: Transactions of the American Philosophy Society: American Philosophy Society; 1967. p. 168.
  • Chadwick A, Berko A, Schofield E, Smith A, Mosselmans J, Jones AM, Cibin G. The application of X-ray absorption spectroscopy in archaeological conservation: example of an artefact from Henry VIII warship, the Mary Rose. J Non Cryst Solids. 2016;451:49–55. doi:10.1016/j.jnoncrysol.2016.05.020
  • Formenti F, Hesnard A, Tchernia A. Note sur le contenu d’une amphore Lamboglia 2 de l’épave de la Madrague de Giens. Archaeonautica. 1978;2:95–100. doi:10.3406/nauti.1978.868
  • Franklin D, Scadding C, Stanbury M, Watling J. ICP-MS trace element analysis for the potential reassignment of separated skeletal remains of a’Batavia mutiny’ victim. J Australas Inst Mari. Archaeol. 2010;34:1–8.
  • Scorrer J, Faillace K, Hildred A, Nederbragt A, Andersen M, Millet M, Lamb AL, Madgwick R. Diversity aboard a Tudor warship: investigating the origins of the Mary Rose crew using multi-isotope analysis. R Soc Open Sci. 2021;8(5). doi:10.1098/rsos.202106
  • Kerns J, Buckley B, Parker A, Bircha H, Matousek P, Hildred A, Goodship AE. The use of laser spectroscopy to investigate bone disease in King Henry VIII’s sailors. J Archaeol Sci. 2015;53:516–520. doi:10.1016/j.jas.2014.11.013
  • Stirland A, Waldron T. Evidence for activity related markers in the vertebrae of the crew of the Mary Rose. J Archaeol Sci. 1997;24(4):329–335. doi:10.1006/jasc.1996.0117
  • Paterson A, Franklin D. The 1629 mass grave for Batavia victims, Beacon Island, Houtman Abrolhos Islands, Western Australia. Australas Hist Archaeol. 2004;22:71–78.
  • Franklin D, Freedman L. A bioarchaeological investigation of a multiple burial associated with the Batavia mutiny of 1629. Perth, Australia: Western Australian Museum; 2006.
  • Franklin D. Human skeletal remains from a multiple burial associated with the mutiny of the VOC Retourschip Batavia, 1629. Int J Osteoarchaeol. 2012;22(6):740–748. doi:10.1002/oa.1235
  • Donlon D Anthropological report of the examination of unknown skeletal remains from Christmas Island 2006. 2007.
  • Associated Press. Bones found in shipwreck don’t belong to infamous pirate. New York Post; 2018 25 May 2018.
  • Maier M, Gomez B, Parera S, Elkin D, De Rosa H, Ciarlo N, Svoboda H. Characterization of cultural remains associated to a human skeleton found at the site HMS Swift (1770). J Mol Struct. 2010;978(1–3):191–194. doi:10.1016/j.molstruc.2010.03.049
  • Stenton D. Finding the dead: bodies, bones and burials from the 1845 Franklin northwest passage expedition. Polar Record. 2018;54(3):197–212. doi:10.1017/S0032247418000359
  • Ambers A, MM B, JL K, Jones B, Durst J, Bruseth JE, Gill-King, H, Budowle, B. Forensic genetic investigation of human skeletal remains recovered from the La Belle shipwreck. Forensic Sci Int. 2020;306:110050. doi:10.1016/j.forsciint.2019.110050
  • Watherston J, McNevin D, Gahan ME, Bruce D, Ward J. Current and emerging tools for the recovery of genetic information from post mortem samples: new directions for disaster victim identification. Forensic Sci Int Genet. 2018;37:270–282. doi:10.1016/j.fsigen.2018.08.016
  • Burger J, Hummel S, Hermann B, Henke W. DNA preservation: a microsatellite-DNA study on ancient skeletal remains. Electrophoresis. 1999;20(8):1722–1728. doi:10.1002/(SICI)1522-2683(19990101)20:8<1722::AID-ELPS1722>3.0.CO;2-4
  • Latham KE, Miller JJ. DNA recovery and analysis from skeletal material in modern forensic contexts. Forensic Sci Res. 2019;4(1):51–59. doi:10.1080/20961790.2018.1515594
  • Latham K, Madonna M. DNA survivability in skeletal remains. In: Pokines J, Symes S, editors. Manual of forensic taphonomy. Boca Raton: CRC Press; 2013. p. 403–426.
  • Ambers, A. Forensic genetic approaches for identification of human skeletal remains: Challenges, best practices, and emerging technologies. 1st ed. Ambers A, editor. Cambridge (MA): Academic Press; 2023.
  • Rodriguez W. Forensic taphonomy: the postmortem fate of human remains. In: Haglund W, Sorg M, editors. Decomposition of buried and submerged bodies. Boca Raton: CRC Press; 1997. p. 459–468.
  • Caruso JL. Decomposition changes in bodies recovered from water. Acad Forensic Pathol. 2016;6(1):19–27. doi:10.23907/2016.003
  • Anderson GS, Hobischak NR. Decomposition of carrion in the marine environment in British Columbia, Canada. Int J Legal Med. 2004;118(4):206–209. doi:10.1007/s00414-004-0447-2
  • Anderson GS, Bell LS, Archambault P. Deep coastal marine taphonomy: investigation into carcass decomposition in the Saanich Inlet, British Columbia using a baited camera. PLoS One. 2014;9(10):e110710. doi:10.1371/journal.pone.0110710
  • Ellingham STD, Perich P, Tidball-Binz M. The fate of human remains in a maritime context and feasibility for forensic humanitarian action to assist in their recovery and identification. Forensic Sci Int. 2017;279:229–234. doi:10.1016/j.forsciint.2017.07.039
  • Prangnell J, McGowan G. Soil temperature calculation for burial site analysis. Forensic Sci Int. 2009;191(1–3):104–109. doi:10.1016/j.forsciint.2009.07.002
  • Simmons T, Heaton V. Postmortem interval:Submerged bodies. In: Jamieson A, editor. Wiley encyclopedia of forensic science. Hoboken, NJ: Wiley Online Library: Wiley; 2013. p. 1–10.
  • O’Brien TG, Kuehner AC. Waxing grave about adipocere: soft tissue change in an aquatic context. J Forensic Sci. 2007;52(2):294–301. doi:10.1111/j.1556-4029.2006.00362.x
  • Widya M, Moffatt C, Simmons T. The formation of early stage adipocere in submerged remains: a preliminary experimental study. J Forensic Sci. 2012;57(2):328–333. doi:10.1111/j.1556-4029.2011.01980.x
  • Forbes SL, Wilson ME, Stuart BH. Examination of adipocere formation in a cold water environment. Int J Legal Med. 2011;125(5):643–650. doi:10.1007/s00414-010-0460-6
  • Fielder S, Buegger F, Klaubert B, Zipp K, Dohrmann R, Wittemeyer M, Zarei M, Graw M. Adipocere withstands 1,600 years of fluctuating groundwater levels in soil. J Archaeol Sci. 2009;36(7):1328–1333. doi:10.1016/j.jas.2009.01.017
  • Pfeiffer S, Milne S, Stevenson RM. The natural decomposition of adipocere. J Forensic Sci. 1998;43(2):368–370. doi:10.1520/JFS16147J
  • Fründ HC, Schoenen D. Quantification of adipocere degradation with and without access to oxygen and to the living soil. Forensic Sci Int. 2009;188(1–3):18–22. doi:10.1016/j.forsciint.2009.03.005
  • Nagy Z. A hands-on overview of tissue preservation methods for molecular genetic analyses. Org Divers Evol. 2010;10(1):91–105. doi:10.1007/s13127-010-0012-4
  • Gill-King H. Chemical and ultrastructural aspects of decomposition. Forensic taphonomy: the postmortem fate of human remains. Boca Raton: CRC Press. 1997. p. 109–126.
  • Alaeddini R, Walsh SJ, Abbas A. Forensic implications of genetic analyses from degraded DNA - A review. Forensic Sci Int Genet. 2010;4(3):148–157. doi:10.1016/j.fsigen.2009.09.007
  • Graham E, Adamowicz MS, editors. Effects of different types of water on the degradation rate of human DNA in bone and tissue. 2015.
  • Geigl E. On the circumstances surrounding the preservation and analysis of very old DNA. Archaeometry. 2002;44(3):337–342. doi:10.1111/1475-4754.t01-1-00066
  • Haglund W, Sorg M. Forensic taphonomy: the postmortem fate of human remains. Amsterdam: CRC Press; 1997.
  • Haglund WD. Disappearance of soft tissue and the disarticulation of human remains from aqueous environments. J Forensic Sci. 1993;38(4):806–815. doi:10.1520/JFS13476J
  • Schuliar Y, Perich P French gendarmerie disaster victim identification team crash of the air France flight airbus AF 447 Rio de Janeiro - Paris (1st of June 2009) recovery process in the Atlantic Ocean. Taphonomical and medico-legal considerations. 22nd Congress of the International Academy of the Legal Medicine; Istanbul 2012.
  • Sorg M, Dearborn J, Sweeney K, Ryan H, Rodriguez W, editors. Marine taphonomy of a case submerged for 32 years. Proc Am Acad Forensic Sci Seattle, Washington; 1995.
  • Haglund W, Sorg M. Advances in forensic taphonomy (Method, theory and archaeological perspectives). In: Haglund W, Sorg M, editors. Human remains in water environments. Boca Raton (FL): CRC Press; 2002. p. 201–218.
  • Pokines J, Higgs N. Macroscopic taphonomic alterations to human bone recovered from marine environments. J Forensic Identif. 2015;65:953–984.
  • Bell LS, Skinner MF, Jones SJ. The speed of post mortem change to the human skeleton and its taphonomic significance. Forensic Sci Int. 1996;82(2):129–140. doi:10.1016/0379-0738(96)01984-6
  • Bell L, Elkerton A. Unique marine taphonomy in human skeletal material recovered from the medieval warship Mary Rose. Int J Osteoarchaeol. 2008;18:523–535. doi:10.1002/oa.952
  • Keenan S. From bone to fossil: a review of the diagenesis of bioapatite. Am Miner. 2016;101:1943–1951. doi:10.2138/am-2016-5737
  • Trueman C, Orr P. Chemical taphonomy of biomineralized tissues. Paleontol. 2013;56:475–486. doi:10.1111/pala.12041
  • Koenig A, Rogers R, Trueman C. Visualizing fossilization using laser ablation-inductively couple plasma-mass spectrometry maps of trace elements in Late Cretaceous bones. Geol. 2009;37(6):511–514. doi:10.1130/G25551A.1
  • Green J. Maritime archaeology: a technical handbook. San Diego (CA): Elsevier; 2004.
  • Steptoe D, Wood W. The human remains from HMS Pandora. Int Archaeol 11. 2002.
  • Anderson GS, Bell LS, Kiel S. Impact of marine submergence and season on faunal colonization and decomposition of pig carcasses in the Salish Sea. PLoS One. 2016;11(3):e0149107. doi:10.1371/journal.pone.0149107
  • Ribéreau-Gayon A, Rando C, Schuliar Y, Chapenoire S, Crema ER, Claes J, Seret B, Maleret V, Morgan RM. Extensive unusual lesions on a large number of immersed human victims found to be from cookiecutter sharks (Isistius spp.): an examination of the Yemenia plane crash. Int J Legal Med. 2017;131(2):423–432. doi:10.1007/s00414-016-1449-6
  • Perich P, editor.Aspects taphonomiques et lesions crash vol IY 626 Sanaa-Moroni Airbus A 310 Yemenia. Dijon: XX Congres AFIO; 2010.
  • Byard RW, James RA, Heath KJ. Recovery of human remains after shark attack. Am J Forensic Med Pathol. 2006;27(3):256–259. doi:10.1097/01.paf.0000221081.80866.5c
  • Byard RW, Both K, Simpson E. The identification of submerged skeletonized remains. Am J Forensic Med Pathol. 2008;29(1):69–71. doi:10.1097/PAF.0b013e31816520aa
  • Işcan MY, McCabe BQ. Analysis of human remains recovered from a shark. Forensic Sci Int. 1995;72(1):15–23. doi:10.1016/0379-0738(94)01643-J
  • Nambiar P, Bridges TE, Brown KA. Allometric relationships of the dentition of the great White Shark, Carcharodon carcharias, in forensic investigations of shark attacks. J Forensic Odontostomatol. 1991;9(1):1–16.
  • Nambiar P, Brown KA, Bridges TE. Forensic implications of the variation in morphology of marginal serrations on the teeth of the great white shark. J Forensic Odontostomatol. 1996;14(1):2–8.
  • Woolgar JD, Cliff G, Nair R, Hafez H, Robbs JV. Shark attack: review of 86 consecutive cases. J Trauma. 2001;50(5):887–891. doi:10.1097/00005373-200105000-00019
  • Ihama Y, Ninomiya K, Noguchi M, Fuke C, Miyazaki T. Characteristic features of injuries due to shark attacks: a review of 12 cases. Leg Med (Tokyo). 2009;11(5):219–225. doi:10.1016/j.legalmed.2009.06.002
  • Lowry D, de Castro A, Mara K, Whitenack LB, Delius B, Burgess GH, Motta P. Determining shark size from forensic analysis of bite damage. Mar Biol. 2009;156:2483–2492. doi:10.1007/s00227-009-1273-3
  • White J, Burgess G, Nakatsukasa M, Hudson M, Pouncett J, Kusaka S. 3000-year-old shark attack victim from Tsukumo shell-mound, Okayama, Japan. J Archaeol Sci: Reports 38. 2021; p. 1–12.
  • Introna F, Di Vella G, Campobasso CP. Migrant deaths and the Kater Radez I wreck: from recovery of the relict to marine taphonomic findings and identification of the victims. Int J Legal Med. 2013;127(4):871–879. doi:10.1007/s00414-012-0807-2
  • Byard RW, James RA, Gilbert JD. Diagnostic problems associated with cadaveric trauma from animal activity. Am J Forensic Med Pathol. 2002;23(3):238–244. doi:10.1097/00000433-200209000-00006
  • Duband S, Forest F, Clemenson A, Debout M, Péoc’h M. Postmortem injuries inflicted by crawfish: morphological and histological aspects. Forensic Sci Int. 2011;206(1–3):e49–51. doi:10.1016/j.forsciint.2010.08.006
  • Hobischak NR, Anderson GS. Time of submergence using aquatic invertebrate succession and decompositional changes. J Forensic Sci. 2002;47(1):142–151. doi:10.1520/JFS15215J
  • Tiemensma M, Bruce NL, Willan RC. Post-mortem human cadaver scavenging by marine crustaceans (Isopoda: cirolanidae) in tropical waters. Forensic Sci Med Pathol. 2017;13(4):515–517. doi:10.1007/s12024-017-9926-x
  • Anderson G, Hobischak N. Determination of time of death for humans discovered in saltwater using aquatic organism succession and decomposition rates. Ottawa (ON): Canadian Police Research Centre; 2002.
  • Makino Y, Tachihara K, Ageda S, Arao T, Fuke C, Miyazaki T. Peculiar circular and C-shaped injuries on a body from the sea. Am J Forensic Med Pathol. 2004;25(2):169–171. doi:10.1097/01.paf.0000127390.07879.62
  • Montelius K, Lindblom B. DNA analysis in disaster victim identification. Forensic Sci Med Pathol. 2012;8(2):140–147. doi:10.1007/s12024-011-9276-z
  • Prinz M, Carracedo A, Mayr WR, Morling N, Parsons TJ, Sajantila A, Scheithauer R, Schmitter H, Schneider PM. DNA commission of the International Society for Forensic Genetics (ISFG): recommendations regarding the role of forensic genetics for disaster victim identification (DVI). Forensic Sci Int Genet. 2007;1(1):3–12. doi:10.1016/j.fsigen.2006.10.003
  • Manjunath BC, Chandrashekar BR, Mahesh M, Vatchala Rani RM. DNA profiling and forensic dentistry–a review of the recent concepts and trends. J Forensic Leg Med. 2011;18(5):191–197. doi:10.1016/j.jflm.2011.02.005
  • Andelinović S, Sutlović D, Erceg Ivkosić I, Skaro V, Ivkosić A, Paić F. Twelve-year experience in identification of skeletal remains from mass graves. Croat Med J. 2005;46(4):530–539.
  • Milos A, Selmanović A, Smajlović L, Huel RL, Katzmarzyk C, Rizvić A, Parsons TJ. Success rates of nuclear short tandem repeat typing from different skeletal elements. Croat Med J. 2007;48(4):486–493.
  • Ziętkiewicz E, Witt M, Daca P, Zebracka-Gala J, Goniewicz M, Jarząb B, Witt M. Current genetic methodologies in the identification of disaster victims and in forensic analysis. J Appl Genet. 2012;53(1):41–60. doi:10.1007/s13353-011-0068-7
  • Calacal GC, Apaga DLT, Salvador JM, Jimenez JAD, Lagat LJ, Villacorta RPF, Lim MCF, Fortun RDR, Datar FA, De Ungria MCA, et al. Comparing different post-mortem human samples as DNA sources for downstream genotyping and identification. Forensic Sci Int Genet. 2015;19:212–220. doi:10.1016/j.fsigen.2015.07.017
  • ICMP. Standard operating procedure for sampling bone and tooth specimens from human remains for DNA testing at the ICMP. ICMP; 2015.
  • Edson S, Christensen A, Barritt S, Meehan A, Leney M, Finelli LN. Sampling of the cranium for mitochondrial DNA analysis of human skeletal remains. Forensic Sci Int Genet Suppl Ser. 2009;2:269–270. doi:10.1016/j.fsigss.2009.09.029
  • Kulstein G, Hadrys T, Wiegand P. As solid as a rock-comparison of CE- and MPS-based analyses of the petrosal bone as a source of DNA for forensic identification of challenging cranial bones. Int J Legal Med. 2018;132(1):13–24. doi:10.1007/s00414-017-1653-z
  • Mundorff A, Davoren JM. Examination of DNA yield rates for different skeletal elements at increasing post mortem intervals. Forensic Sci Int Genet. 2014;8(1):55–63. doi:10.1016/j.fsigen.2013.08.001
  • Fredericks J, Brown K, Williams A, Bennett P. DNA analysis of skeletal tissue recovered from the English Channel. J Forensic Leg Med. 2013;20(6):757–759. doi:10.1016/j.jflm.2013.04.013
  • De Leo D, Turrina S, Marigo M. Effects of individual dental factors on genomic DNA analysis. Am J Forensic Med Pathol. 2000;21(4):411–415. doi:10.1097/00000433-200012000-00023
  • Rubio L, Martinez LJ, Martinez E, Martin de Las Heras S. Study of short- and long-term storage of teeth and its influence on DNA. J Forensic Sci. 2009;54(6):1411–1413. doi:10.1111/j.1556-4029.2009.01159.x
  • Higgins D, Austin JJ. Teeth as a source of DNA for forensic identification of human remains: a review. Sci Justice. 2013;53(4):433–441. doi:10.1016/j.scijus.2013.06.001
  • Schwartz TR, Schwartz EA, Mieszerski L, McNally L, Kobilinsky L. Characterization of deoxyribonucleic acid (DNA) obtained from teeth subjected to various environmental conditions. J Forensic Sci. 1991;36(4):979–990. doi:10.1520/JFS13113J
  • Alvarez García A, Muñoz I, Pestoni C, Lareu MV, Rodríguez-Calvo MS, Carracedo A. Effect of environmental factors on PCR-DNA analysis from dental pulp. Int J Legal Med. 1996;109(3):125–129. doi:10.1007/BF01369671
  • Fisher DL, Holland MM, Mitchell L, Sledzik PS, Wilcox AW, Wadhams M. Extraction, evaluation, and amplification of DNA from decalcified and undecalcified United States Civil War bone. J Forensic Sci. 1993;38(1):60–68.
  • Sørensen E, Hansen SH, Eriksen B, Morling N. Application of thiopropyl sepharose 6B for removal of PCR inhibitors from DNA extracts of a thigh bone recovered from the sea. Int J Legal Med. 2003;117(4):245–247. doi:10.1007/s00414-003-0375-6
  • Combs LG, Warren JE, Huynh V, Castaneda J, Golden TD, Roby RK. The effects of metal ion PCR inhibitors on results obtained with the quantifiler® human DNA quantification kit. Forensic Sci Int Genet. 2015;19:180–189. doi:10.1016/j.fsigen.2015.06.013
  • Pionzio AM, McCord BR. The effect of internal control sequence and length on the response to PCR inhibition in real-time PCR quantitation. Forensic Sci Int Genet. 2014;9:55–60. doi:10.1016/j.fsigen.2013.10.010
  • Alaeddini R, Burgoyne L, editors. Endogenous inhibition of DNA amplification from human skeletal remains. The 18th International Symposium of the Forensic Sciences; 2006; Fremantle (Perth), (Australia).
  • Sutlovic D, Gamulin S, Definis-Gojanovic M, Gugic D, Andjelinovic S. Interaction of humic acids with human DNA: proposed mechanisms and kinetics. Electrophoresis. 2008;29(7):1467–1472. doi:10.1002/elps.200700699
  • Primorac D. The role of DNA technology in identification of skeletal remains discovered in mass graves. Forensic Sci Int. 2004;146(Suppl):S63–4.
  • Tebbe CC, Vahjen W. Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. Appl Environ Microbiol. 1993;59(8):2657–2665. doi:10.1128/aem.59.8.2657-2665.1993
  • Tsai YL, Olson BH. Rapid method for separation of bacterial DNA from humic substances in sediments for polymerase chain reaction. Appl Environ Microbiol. 1992;58(7):2292–2295. doi:10.1128/aem.58.7.2292-2295.1992
  • Kreader CA. Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. Appl Environ Microbiol. 1996;62(3):1102–1106. doi:10.1128/aem.62.3.1102-1106.1996
  • Alaeddini R. Forensic implications of PCR inhibition - A review. Forensic Sci Int Genet. 2012;6(3):297–305. doi:10.1016/j.fsigen.2011.08.006
  • Thompson RE, Duncan G, McCord BR. An investigation of PCR inhibition using Plexor®-based quantitative PCR and short tandem repeat amplification. J Forensic Sci. 2014;59(6):1517–1529. doi:10.1111/1556-4029.12556
  • Giannakis C, Forbes IJ, Zalewski PD. Ca2+/Mg(2+)-dependent nuclease: tissue distribution, relationship to inter-nucleosomal DNA fragmentation and inhibition by Zn2+. Biochem Biophys Res Commun. 1991;181(2):915–920. doi:10.1016/0006-291X(91)91278-K
  • Lindahl T. Instability and decay of the primary structure of DNA. Nat. 1993;362(6422):709–715. doi:10.1038/362709a0
  • Stiller M, Green RE, Ronan M, Simons JF, Du L, He W, Egholm M, Rothberg JM, Keates SG, Ovodov ND, et al. Patterns of nucleotide misincorporations during enzymatic amplification and direct large-scale sequencing of ancient DNA. Proc Natl Acad Sci U S A. 2006;103(37):13578–13584. doi:10.1073/pnas.0605327103
  • Dong L, Mi R, Glass RA, Barry JN, Cao W. Repair of deaminated base damage by Schizosaccharomyces pombe thymine DNA glycosylase. DNA Repair (Amst). 2008;7(12):1962–1972. doi:10.1016/j.dnarep.2008.08.006
  • Allen-Hall A, McNevin D. Non-cryogenic forensic tissue preservation in the field: a review. Aust J Forensic Sci. 2013;45(4):450–460. doi:10.1080/00450618.2013.789077
  • Gilbert M, Hansen A, Willerslev E, Turner-Walker G, Collins M. Insights into the processes behind the contamination of degraded human teeth and bone samples with exogenous sources of DNA. Int J Ostoarchaeol. 2006;16:156–164. doi:10.1002/oa.832
  • Gilbert M, Rudbeck L, Willerslev E, Hansen A, Smith C. Biochemical and physical correlates of DNA contamination in archaeological human bones and teeth excavated at Matera, Italy. J Archaeol Sci. 2005;32:783–795.
  • Richards M, Sykes B, Hedges R. Authenticating DNA extracted from ancient skeletal remains. J Archaeol Sci. 1995;22:291–299. doi:10.1006/jasc.1995.0031
  • Handt O, Krings M, Ward RH, Pääbo S. The retrieval of ancient human DNA sequences. Am J Hum Genet. 1996;59(2):368–376.
  • Hofreiter M, Serre D, Poinar HN, Kuch M, Pääbo S. Ancient DNA. Nat Rev Genet. 2001;2(5):353–359. doi:10.1038/35072071
  • Wandeler P, Smith S, Morin PA, Pettifor RA, Funk SM. Patterns of nuclear DNA degeneration over time–a case study in historic teeth samples. Mol Ecol. 2003;12(4):1087–1093. doi:10.1046/j.1365-294X.2003.01807.x
  • von Wurmb-schwark N, Heinrich A, Freudenberg M, Gebühr M, Schwark T. The impact of DNA contamination of bone samples in forensic case analysis and anthropological research. Leg Med (Tokyo). 2008;10(3):125–130. doi:10.1016/j.legalmed.2007.10.001
  • Currey J. Bones: structure and mechanics. Princeton: Princeton University Press; 2002.
  • Sampietro ML, Gilbert MT, Lao O, Caramelli D, Lari M, Bertranpetit J. Tracking down human contamination in ancient human teeth. Mol Biol Evol. 2006;23(9):1801–1807. doi:10.1093/molbev/msl047
  • Westen AA, Gerretsen RR, Maat GJ. Femur, rib, and tooth sample collection for DNA analysis in disaster victim identification (DVI): a method to minimize contamination risk. Forensic Sci Med Pathol. 2008;4(1):15–21. doi:10.1007/s12024-007-0027-0
  • Kemp BM, Smith DG. Use of bleach to eliminate contaminating DNA from the surface of bones and teeth. Forensic Sci Int. 2005;154(1):53–61. doi:10.1016/j.forsciint.2004.11.017
  • Edson SM, Christensen AF. Field contamination of skeletonized human remains with exogenous DNA. J Forensic Sci. 2013;58(1):206–209. doi:10.1111/j.1556-4029.2012.02270.x
  • Ballou S, Stolorow M. The biological evidence preservation handbook: best practices for evidence handlers. Washington D.C.: U.S: Department of Commerce, National Institute of Standards and Technology; 2013.
  • Hummel S. Ancient DNA typing (Methods, strategies and applications). Berlin Heidelberg: Springer-Verlag; 2003.
  • Grdina S, Fris E, Podovsovnik E, Zupanc T, Pajnic I. Storage of second world war bone samples: bone fragments versus bone powder. Forensic Sci Intl: Genet Suppl Ser. 2019;7:175–176.
  • Austin RM, Sholts SB, Williams L, Kistler L, Hofman CA. Opinion: to curate the molecular past, museums need a carefully considered set of best practices. Proc Natl Acad Sci U S A. 2019;116(5):1471–1474. doi:10.1073/pnas.1822038116
  • INTERPOL. Disaster victim identification (amended) guide. Lyon: INTERPOL; 2014.
  • Ward J. Best practice recommendations for the establishment of a national DNA identification program for missing persons: a global perspective. Forensic Sci Int Genet Suppl Ser. 2017;6:e43–e45. doi:10.1016/j.fsigss.2017.09.009
  • Kalmár T, Bachrati CZ, Marcsik A, Raskó I. A simple and efficient method for PCR amplifiable DNA extraction from ancient bones. Nucleic Acids Res. 2000;28(12):E67. doi:10.1093/nar/28.12.e67
  • Meyer E, Wiese M, Bruchhaus H, Claussen M, Klein A. Extraction and amplification of authentic DNA from ancient human remains. Forensic Sci Int. 2000;113(1–3):87–90. doi:10.1016/S0379-0738(00)00220-6
  • Alonso A, Andelinović S, Martín P, Sutlović D, Erceg I, Huffine E, de Simón LF, Albarrán C, Definis-Gojanović M, Fernández-Rodriguez A, et al. DNA typing from skeletal remains: evaluation of multiplex and megaplex STR systems on DNA isolated from bone and teeth samples. Croat Med J. 2001;42(3):260–266.
  • Edson SM, Ross JP, Coble MD, Parsons TJ, Barritt SM. Naming the dead - confronting the realities of rapid identification of degraded skeletal remains. Forensic Sci Rev. 2004;16(1):63–90.
  • Salamon M, Tuross N, Arensburg B, Weiner S. Relatively well preserved DNA is present in the crystal aggregates of fossil bones. Proc Natl Acad Sci U S A. 2005;102(39):13783–13788. doi:10.1073/pnas.0503718102
  • Lalueza-Fox C. Analysis of ancient mitochondrial DNA from extinct Aborigines from Tierra del Fuego-Patagonia. Ancient Biomol. 1996;1:43–54.
  • Lalueza C, Pérez-Pérez A, Prats E, Cornudella L, Turbón D. Lack of founding Amerindian mitochondrial DNA lineages in extinct aborigines from Tierra del Fuego-Patagonia. Hum Mol Genet. 1997;6(1):41–46. doi:10.1093/hmg/6.1.41
  • Montiel R, Malgosa A, Francalacci P. Authenticating ancient human mitochondrial DNA. Hum Biol. 2001;73(5):689–713. doi:10.1353/hub.2001.0069
  • González-Oliver A, Márquez-Morfín L, Jiménez JC, Torre-Blanco A. Founding Amerindian mitochondrial DNA lineages in ancient Maya from Xcaret, Quintana Roo. Am J Phys Anthropol. 2001;116(3):230–235. doi:10.1002/ajpa.1118
  • Barta JL, Monroe C, Kemp BM. Further evaluation of the efficacy of contamination removal from bone surfaces. Forensic Sci Int. 2013;231(1–3):340–348. doi:10.1016/j.forsciint.2013.06.004
  • Goodwin WH. The use of forensic DNA analysis in humanitarian forensic action: the development of a set of international standards. Forensic Sci Int. 2017;278:221–227. doi:10.1016/j.forsciint.2017.07.002
  • Yang D, Watt K. Contamination controls when preparing archaeological remains for ancient DNA analysis. J Archaeol Sci. 2005;32:331–336. doi:10.1016/j.jas.2004.09.008
  • Cooper A, Poinar H. Ancient DNA: do it right or not at all. Sci. 2000;18:1139–1141. doi:10.1126/science.289.5482.1139b
  • Poinar H , editor Criteria of authenticity for DNA from ancient and forensic samples. Int Congr Ser. 1239; 2003; p. 575–579.
  • Taberlet P, Griffin S, Goossens B, Questiau S, Manceau V, Escaravage N. Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res. 1996;24(16):3189–3194. doi:10.1093/nar/24.16.3189
  • Pinhasi R, Fernandes D, Sirak K, Novak M, Connell S, Alpaslan-Roodenberg S, Gerritsen F, Moiseyev V, Gromov A, Raczky P, et al. Optimal ancient DNA yields from the inner ear part of the human petrous bone. PLoS One. 2015;10(6):e0129102. doi:10.1371/journal.pone.0129102
  • Jørkov ML, Heinemeier J, Lynnerup N. The petrous bone–a new sampling site for identifying early dietary patterns in stable isotopic studies. Am J Phys Anthropol. 2009;138(2):199–209. doi:10.1002/ajpa.20919
  • Ponce de León MS, Koesbardiati T, Weissmann JD, Milella M, Reyna-Blanco CS, Suwa G, Kondo O, Malaspinas A-S, White TD, Zollikofer CPE, et al. Human bony labyrinth is an indicator of population history and dispersal from Africa. Proc Natl Acad Sci U S A. 2018;115(16):4128–4133. doi:10.1073/pnas.1717873115
  • Hansen HB, Damgaard PB, Margaryan A, Stenderup J, Lynnerup N, Willerslev E, Allentoft ME. Comparing ancient DNA preservation in petrous bone and tooth cementum. PLoS One. 2017;12(1):e0170940. doi:10.1371/journal.pone.0170940
  • Ferreira S, Garrido R, Paula K, Nogueira R, Oliveira E, Moraes A. Cartilage and phalanges from hallux: alternative sources of samples for DNA typing in disaster victim identification (DVI). A comparative study. Forensic Sci Int Genet Supp Ser. 2013;4:e366–e7. doi:10.1016/j.fsigss.2013.10.186
  • Watherston J, Watson J, Bruce D, Ward J, McNevin D. Efficient DNA profiling protocols for disaster victim identification. Forensic Sci. 2021;1(3):148–170. doi:10.3390/forensicsci1030014
  • Inkret J, Podovšovnik E, Zupanc T, Haring G, Pajnič IZ. Intra-bone nuclear DNA variability in Second World War metatarsal and metacarpal bones. Int J Legal Med. 2021;135(4):1245–1256. doi:10.1007/s00414-021-02528-9
  • Zupanc T, Podovšovnik E, Obal M, Zupanič Pajnič I. High DNA yield from metatarsal and metacarpal bones from Slovenian Second World War skeletal remains. Forensic Sci Int Genet. 2021;51:102426. doi:10.1016/j.fsigen.2020.102426
  • Hasap L, Chotigeat W, Pradutkanchana J, Vongvatcharanon U, Kitpipit T, Thanakiatkrai P. A novel, 4-h DNA extraction method for STR typing of casework bone samples. Int J Legal Med. 2020;134(2):461–471. doi:10.1007/s00414-019-02232-9
  • Emmons AL, Davoren J, DeBruyn JM, Mundorff AZ. Inter and intra-individual variation in skeletal DNA preservation in buried remains. Forensic Sci Int Genet. 2020;44:102193. doi:10.1016/j.fsigen.2019.102193
  • Sirak KA, Fernandes DM, Cheronet O, Novak M, Gamarra B, Balassa T, Bernert Z, Cséki A, Dani J, Gallina JZ, et al. A minimally-invasive method for sampling human petrous bones from the cranial base for ancient DNA analysis. Biotechniques. 2017;62(6):283–289. doi:10.2144/000114558
  • Watherston J, Watson J, Bruce D, Ueland M, McNevin D, Ward J. An in-field evaluation of rapid DNA instruments for disaster victim identification. Int J Legal Med. 2021;136:493–499. under review. doi:10.1007/s00414-021-02748-z
  • Loreille OM, Diegoli TM, Irwin JA, Coble MD, Parsons TJ. High efficiency DNA extraction from bone by total demineralization. Forensic Sci Int Genet. 2007;1(2):191–195. doi:10.1016/j.fsigen.2007.02.006
  • Finaughty C, Heathfield LJ, Kemp V, Márquez-Grant N. Forensic DNA extraction methods for human hard tissue: a systematic literature review and meta-analysis of technologies and sample type. Forensic Sci Int Genet. 2022;63:102818. doi:10.1016/j.fsigen.2022.102818
  • Yang DY, Eng B, Waye JS, Dudar JC, Saunders SR. Technical note: improved DNA extraction from ancient bones using silica-based spin columns. Am J Phys Anthropol. 1998;105(4):539–543. doi:10.1002/(SICI)1096-8644(199804)105:4<539::AID-AJPA10>3.0.CO;2-1
  • Lee HY, Park MJ, Kim NY, Sim JE, Yang WI, Shin KJ. Simple and highly effective DNA extraction methods from old skeletal remains using silica columns. Forensic Sci Int Genet. 2010;4(5):275–280. doi:10.1016/j.fsigen.2009.10.014
  • Seo SB, Zhang A, Kim HY, Yi JA, Lee HY, Shin DH, Lee SD. Technical note: efficiency of total demineralization and ion-exchange column for DNA extraction from bone. Am J Phys Anthropol. 2010;141(1):158–162. doi:10.1002/ajpa.21193
  • Amory S, Huel R, Bilić A, Loreille O, Parsons TJ. Automatable full demineralization DNA extraction procedure from degraded skeletal remains. Forensic Sci Int Genet. 2012;6(3):398–406. doi:10.1016/j.fsigen.2011.08.004
  • Dabney J, Knapp M, Glocke I, Gansauge MT, Weihmann A, Nickel B, Valdiosera C, García N, Pääbo S, Arsuaga J-L, et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc Natl Acad Sci U S A. 2013;110(39):15758–15763. doi:10.1073/pnas.1314445110
  • Xavier C, Eduardoff M, Bertoglio B, Amory C, Berger C, Casas-Vargas A, Pallua J, Parson W. Evaluation of DNA extraction methods developed for forensic and ancient DNA applications using bone samples of different age. Genes (Basel). 2021;12:2. doi:10.3390/genes12020146
  • Zavala EI, Thomas JT, Sturk-Andreaggi K, Daniels-Higginbotham J, Meyers KK, Barrit-Ross S, Aximu-Petri A, Richter J, Nickel B, Berg GE, et al. Ancient DNA methods improve forensic DNA profiling of Korean War and World War II unknowns. Genes (Basel). 2022;13:1. doi:10.3390/genes13010129
  • Ward J, Watherston J. Quantitative and qualitative assessment of DNA recovered from human skeletal remains. In: Ambers A, editor. Forensic genetic approaches for the identification of human skeletal remains: challenges, best practices, and emerging technologies. New York: Elsevier Academic Press; 2022; p. 137–163.
  • Watherston J, Ward J. Autosomal short tandem repeat profiling of human skeletal remains. In: Ambers A, editor. Forensic genetic approaches for the identification of human skeletal remains: challenges, best practices, and emerging technologies. New York: Elsevier Academic Press; 2022; p. 167–197.
  • Prakash S, Patole M, Ghumatkar S, Shouche Y. Mitochondrial 12S rRNA sequence analysis in wildlife forensics. Curr Sci India. 2000;78(10):1239–1241.
  • Melton T, Holland C. Routine forensic use of the mitochondrial 12S ribosomal RNA gene for species identification. J Forensic Sci. 2007;52(6):1305–1307. doi:10.1111/j.1556-4029.2007.00553.x
  • Walsh S, Lindenbergh A, Zuniga SB, Sijen T, de Knijff P, Kayser M, Ballantyne KN. Developmental validation of the IrisPlex system: determination of blue and brown iris colour for forensic intelligence. Forensic Sci Int Genet. 2011;5(5):464–471. doi:10.1016/j.fsigen.2010.09.008
  • Walsh S, Liu F, Ballantyne KN, van Oven M, Lao O, Kayser M. IrisPlex: a sensitive DNA tool for accurate prediction of blue and brown eye colour in the absence of ancestry information. Forensic Sci Int Genet. 2011;5(3):170–180. doi:10.1016/j.fsigen.2010.02.004
  • Walsh S, Liu F, Wollstein A, Kovatsi L, Ralf A, Kosiniak-Kamysz A, Branicki W, Kayser M. The HIrisPlex system for simultaneous prediction of hair and eye colour from DNA. Forensic Sci Int Genet. 2013;7(1):98–115. doi:10.1016/j.fsigen.2012.07.005
  • Walsh S, Chaitanya L, Clarisse L, Wirken L, Draus-Barini J, Kovatsi L, Maeda H, Ishikawa T, Sijen T, de Knijff P, et al. Developmental validation of the HIrisPlex system: DNA-based eye and hair colour prediction for forensic and anthropological usage. Forensic Sci Int Genet. 2014;9:150–161. doi:10.1016/j.fsigen.2013.12.006
  • Chaitanya L, Breslin K, Zuñiga S, Wirken L, Pośpiech E, Kukla-Bartoszek M, Sijen T, Knijff PD, Liu F, Branicki W, et al. The HIrisPlex-S system for eye, hair and skin colour prediction from DNA: introduction and forensic developmental validation. Forensic Sci Int Genet. 2018;35:123–135. doi:10.1016/j.fsigen.2018.04.004
  • Chaitanya L, Pajnič IZ, Walsh S, Balažic J, Zupanc T, Kayser M. Bringing colour back after 70 years: predicting eye and hair colour from skeletal remains of World War II victims using the HIrisPlex system. Forensic Sci Int Genet. 2017;26:48–57. doi:10.1016/j.fsigen.2016.10.004
  • Phillips C, Salas A, Sánchez JJ, Fondevila M, Gómez-Tato A, Alvarez-Dios J, Calaza M, de Cal MC, Ballard D, Lareu MV, et al. Inferring ancestral origin using a single multiplex assay of ancestry-informative marker SNPs. Forensic Sci Int Genet. 2007;1(3–4):273–280. doi:10.1016/j.fsigen.2007.06.008
  • Halder I, Shriver M, Thomas M, Fernandez JR, Frudakis T. A panel of ancestry informative markers for estimating individual biogeographical ancestry and admixture from four continents: utility and applications. Hum Mutat. 2008;29(5):648–658. doi:10.1002/humu.20695
  • Pereira R, Phillips C, Pinto N, Santos C, Dos Santos SE, Amorim A. Straightforward inference of ancestry and admixture proportions through ancestry-informative insertion deletion multiplexing. PLoS One. 2012;7(1):e29684.
  • Fondevila M, Phillips C, Santos C, Freire Aradas A, Vallone PM, Butler JM, Lareu MV, Carracedo Á. Revision of the SNPforID 34-plex forensic ancestry test: assay enhancements, standard reference sample genotypes and extended population studies. Forensic Sci Int Genet. 2013;7(1):63–74. doi:10.1016/j.fsigen.2012.06.007
  • Phillips C, Freire Aradas A, Kriegel AK, Fondevila M, Bulbul O, Santos C, Rech FS, Carceles MDP, Carracedo Á, Schneider PM, et al. Eurasiaplex: a forensic SNP assay for differentiating European and South Asian ancestries. Forensic Sci Int Genet. 2013;7(3):359–366. doi:10.1016/j.fsigen.2013.02.010
  • Santos C, Phillips C, Fondevila M, Daniel R, van Oorschot RAH, Burchard EG, Schanfield MS, Souto L, Uacyisrael J, Via M, et al. Pacifiplex: an ancestry-informative SNP panel centred on Australia and the Pacific region. Forensic Sci Int Genet. 2016;20:71–80. doi:10.1016/j.fsigen.2015.10.003
  • Phillips C, McNevin D, Kidd KK, Lagacé R, Wootton S, de la Puente M, Freire-Aradas A, Mosquera-Miguel A, Eduardoff M, Gross T, et al. MAPlex - A massively parallel sequencing ancestry analysis multiplex for Asia-Pacific populations. Forensic Sci Int Genet. 2019;42:213–226. doi:10.1016/j.fsigen.2019.06.022
  • Xavier C, de la Puente M, Phillips C, Eduardoff M, Heidegger A, Mosquera-Miguel A, Freire-Aradas A, Lagace R, Wootton S, Power D, et al. Forensic evaluation of the Asia Pacific ancestry-informative MAPlex assay. Forensic Sci Int Genet. 2020;48:102344. doi:10.1016/j.fsigen.2020.102344
  • Illumina. ForenSeq™ DNA signature prep reference guide. San Diego, California: Illumina, Inc; 2015.
  • Applied Biosystems™. Precision ID panels with the Ion PGM™ system APPLICATION GUIDE. In: Life Technologies Corporation E, editor. Carlsbad (CA): TFS SCIENTIFIC; 2017.
  • Hollard C, Keyser C, Delabarde T, Gonzalez A, Vilela Lamego C, Zvénigorosky V, Ludes B. Case report: on the use of the HID-Ion AmpliSeq™ ancestry panel in a real forensic case. Int J Legal Med. 2017;131(2):351–358. doi:10.1007/s00414-016-1425-1
  • Al-Asfi M, McNevin D, Mehta B, Power D, Gahan ME, Daniel R. Assessment of the precision ID ancestry panel. Int J Legal Med. 2018;132:1581–1594. doi:10.1007/s00414-018-1785-9
  • Kidd KK, Speed WC, Pakstis AJ, Furtado MR, Fang R, Madbouly A, Maiers M, Middha M, Friedlaender FR, Kidd JR, et al. Progress toward an efficient panel of SNPs for ancestry inference. Forensic Sci Int Genet. 2014;10:23–32. doi:10.1016/j.fsigen.2014.01.002
  • Espregueira Themudo G, Smidt Mogensen H, Børsting C, Morling N. Frequencies of HID-ion ampliseq ancestry panel markers among greenlanders. Forensic Sci Int Genet. 2016;24:60–64. doi:10.1016/j.fsigen.2016.06.001
  • García O, Ajuriagerra JA, Alday A, Alonso S, Pérez JA, Soto A, Uriarte I, Yurrebaso I. Frequencies of the precision ID ancestry panel markers in Basques using the Ion Torrent PGM. Forensic Sci Int Genet. 2017;31:e1–e4. doi:10.1016/j.fsigen.2017.09.006
  • Pereira V, Mogensen HS, Børsting C, Morling N. Evaluation of the precision ID ancestry panel for crime case work: a SNP typing assay developed for typing of 165 ancestral informative markers. Forensic Sci Int Genet. 2017;28:138–145. doi:10.1016/j.fsigen.2017.02.013
  • Butler JM, Coble MD, Vallone PM. STRs vs. SNPs: thoughts on the future of forensic DNA testing forensic. Sci Med Pathol. 2007;3(3):200–205.
  • Vallone PM, Butler JM. Y-SNP typing of U.S. African American and Caucasian samples using allele-specific hybridization and primer extension. J Forensic Sci. 2004;49(4):723–732.
  • Wetton JH, Tsang KW, Khan H. Inferring the population of origin of DNA evidence within the UK by allele-specific hybridization of Y-SNPs. Forensic Sci Int. 2005;152(1):45–53. doi:10.1016/j.forsciint.2005.03.009
  • Gill P, Brenner C, Brinkmann B, Budowle B, Carracedo A, Jobling MA, de Knijff P, Kayser M, Krawczak M, Mayr WR, et al. DNA commission of the international society of forensic genetics: recommendations on forensic analysis using Y-chromosome STRs. Forensic Sci Int. 2001;124(1):5–10. doi:10.1016/S0379-0738(01)00498-4
  • Balanovsky O. Toward a consensus on SNP and STR mutation rates on the human Y-chromosome. Hum Genet. 2017;136(5):575–590. doi:10.1007/s00439-017-1805-8
  • Butler JM. Advanced topics in forensic DNA typing: methodology. San Diego: Academic Press; 2012.
  • Nachman MW, Crowell SL. Estimate of the mutation rate per nucleotide in humans. Genet. 2000;156(1):297–304. doi:10.1093/genetics/156.1.297
  • Qian X, Hou J, Wang Z, Ye Y, Lang M, Gao T, Liu J, Hou Y. Next generation sequencing plus (NGS+) with Y-chromosomal markers for forensic pedigree searches. Sci Rep. 2017;7(1):11324. doi:10.1038/s41598-017-11955-x
  • van Oven M, Van Geystelen A, Kayser M, Decorte R, Larmuseau MH. Seeing the wood for the trees: a minimal reference phylogeny for the human Y chromosome. Hum Mutat. 2014;35(2):187–191. doi:10.1002/humu.22468
  • Calafell F, Larmuseau MHD. The Y chromosome as the most popular marker in genetic genealogy benefits interdisciplinary research. Hum Genet. 2017;136(5):559–573. doi:10.1007/s00439-016-1740-0
  • Truelsen D, Freire-Aradas A, Nazari M, Aliferi A, Ballard D, Phillips C, Morling N, Pereira V, Børsting C. Evaluation of a custom QIAseq targeted DNA panel with 164 ancestry informative markers sequenced with the Illumina MiSeq. Sci Rep. 2021;11(1):21040. doi:10.1038/s41598-021-99933-2
  • Verogen. ForenSeq Kintelligence Kit - Reference Guide. 2021.
  • Kling D, Phillips C, Kennett D, Tillmar A. Investigative genetic genealogy: current methods, knowledge and practice. Forensic Sci Int Genet. 2021;52:102474. doi:10.1016/j.fsigen.2021.102474
  • de Vries JH, Kling D, Vidaki A, Arp P, Kalamara V, Verbiest MMPJ, Piniewska-Róg D, Parsons TJ, Uitterlinden AG, Kayser M, et al. Impact of SNP microarray analysis of compromised DNA on kinship classification success in the context of investigative genetic genealogy. Forensic Sci Int Genet. 2021;56:102625. doi:10.1016/j.fsigen.2021.102625
  • Keating B, Bansal AT, Walsh S, Millman J, Newman J, Kidd K, Budowle B, Eisenberg A, Donfack J, Gasparini P, et al. First all-in-one diagnostic tool for DNA intelligence: genome-wide inference of biogeographic ancestry, appearance, relatedness, and sex with the Identitas v1 Forensic Chip. Int J Legal Med. 2013;127(3):559–572. doi:10.1007/s00414-012-0788-1
  • Fondevila M, Phillips C, Naveran N, Fernandez L, Cerezo M, Salas A, Carracedo Á, Lareu MV. Case report: identification of skeletal remains using short-amplicon marker analysis of severely degraded DNA extracted from a decomposed and charred femur. Forensic Sci Int Genet. 2008;2(3):212–218. doi:10.1016/j.fsigen.2008.02.005
  • Dietrich D, Uhl B, Sailer V, Holmes EE, Jung M, Meller S, Kristiansen G. Improved PCR performance using template DNA from formalin-fixed and paraffin-embedded tissues by overcoming PCR inhibition. PLoS One. 2013;8(10):e77771. doi:10.1371/journal.pone.0077771
  • Gill P. Application of low copy number DNA profiling. Croat Med J. 2001;42(3):229–232.
  • Parsons TJ, Huel RML, Bajunović Z, Rizvić A. Large scale DNA identification: the ICMP experience. Forensic Sci Int Genet. 2019;38:236–244. doi:10.1016/j.fsigen.2018.11.008
  • Bessekri M, Aggoune A, Lazreg S, Bucht R, Fuller V. Comparative study on the effects of reduced PCR reaction volumes and increased cycle number, on the sensitivity and the stochastic threshold of the AmpFlSTR Identifiler® Plus kit. Forensic Sci Int Genet Suppl Ser. 2013;4(1):e306–e7. doi:10.1016/j.fsigss.2013.10.156
  • Gaines ML, Wojtkiewicz PW, Valentine JA, Brown CL. Reduced volume PCR amplification reactions using the AmpFlSTR profiler plus kit. J Forensic Sci. 2002;47(6):1224–1237. doi:10.1520/JFS15554J
  • Hoffman NH, Fenger T. Validation of half-reaction amplification using Promega PowerPlex 16. J Forensic Sci. 2010;55(4):1044–1049. doi:10.1111/j.1556-4029.2010.01388.x
  • Brito P, Gouveia N, Bogas V, Bento A, Balsa F, Lopes V, Sampaio L, Cunha P, Bento MS, Serra A, et al. Evaluation and comparative analysis on reduction of Globalfiler™ reaction volume in low template samples. Forensic Sci Int Genet Suppl Ser. 2017;6:e362–e4. doi:10.1016/j.fsigss.2017.09.109
  • Zar M, Shahid A, Shahzad M, Shin K-J, Lee H, Israr M, Husnain T. Comparative study of STR loci for typing old skeletal remains with modified protocols of AmpFlSTR identifiler and AmpFlSTR MiniFiler STR kits. Aust J Forensic Sci. 2015;47(2):200–223. doi:10.1080/00450618.2014.925976
  • Irwin JA, Just RS, Loreille OM, Parsons TJ. Characterization of a modified amplification approach for improved STR recovery from severely degraded skeletal elements. Forensic Sci Int Genet. 2012;6(5):578–587. doi:10.1016/j.fsigen.2012.01.010
  • JA I, Leney MD, Loreille O, Barritt SM, Christensen AF, Holland TD. Application of low copy number STR typing to the identification of aged, degraded skeletal remains. J Forensic Sci. 2007;52(6):1322–1327. doi:10.1111/j.1556-4029.2007.00561.x
  • Zar M, Shahid A, Shahzad M, Shin K-J, Lee H, Israr M. Forensic DNA typing of old skeletal remains using AmpFlSTR® identifiler® PCR amplification kit. J Forensic Res. 2013;5(1):1–6.
  • McNevin D, Edson J, Robertson J, Austin JJ. Reduced reaction volumes and increased Taq DNA polymerase concentration improve STR profiling outcomes from a real-world low template DNA source: telogen hairs. Forensic Sci Med Pathol. 2015;11(3):326–338. doi:10.1007/s12024-015-9679-3
  • Hofreiter M, Sneberger J, Pospisek M, Vanek D. Progress in forensic bone DNA analysis: lessons learned from ancient DNA. Forensic Sci Int Genet. 2021;54:102538. doi:10.1016/j.fsigen.2021.102538

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.