5,500
Views
131
CrossRef citations to date
0
Altmetric
Original Articles

STEM Motivation Interventions for Adolescents: A Promising Start, but Further to Go

&

REFERENCES

  • Acee, T. W., & Weinstein, C. E. (2010). Effects of a value-reappraisal intervention on statistics students’ motivation and performance. The Journal of Experimental Education, 78, 487–512. doi:10.1080/00220970903352753
  • Bai, H., Pan, W., Hirumi, A., & Kebritchi, M. (2012). Assessing the effectiveness of a 3-D instructional game on improving mathematics achievement and motivation of middle school students. British Journal of Educational Technology, 43, 993–1003. doi:10.1111/j.1467-8535.2011.01269.x
  • Bandura, A. (1997) Self-efficacy: The exercise of control. New York, NY: W. H. Freeman
  • Barr, D. A., Gonzalez, M. E., & Wanat, S. F. (2008). The leaky pipeline: Factors associated with early decline in interest in premedical studies among underrepresented minority undergraduate students. Academic Medicine, 83, 503–511. doi:10.1097/acm.0b013e31816bda16
  • Begg, C. B. (1994). Publication bias. In H. Cooper & L. V. Hedges (Eds.), Handbook of research synthesis (pp. 399–409). New York, NY: Sage.
  • Berger, R., & Hänze, M. (2009). Comparison of two small-group learning methods in 12th-grade physics classes focusing on intrinsic motivation and academic performance. International Journal of Science Education, 31, 1511–1527. doi:10.1080/09500690802116289
  • Betz, D. E., & Sekaquaptewa, D. (2012). My fair physicist? Feminine math and science role models demotivate young girls. Social Psychological and Personality Science, 3, 738–746. doi:10.1037/e527772014-429
  • Blackwell, L. S., Trzesniewski, K. H., & Dweck, C. S. (2007). Implicit theories of intelligence predict achievement across an adolescent transition: A longitudinal study and an intervention. Child Development, 78(1), 246–263. doi:10.1111/j.1467-8624.2007.00995.x
  • Boaler, J., & Greeno, J. G. (2000). Identity, agency, and knowing in mathematic worlds. Multiple Perspectives on Mathematics Teaching and Learning, 171–200.
  • Brewer, D. S. (2009). The effects of online homework on achievement and self-efficacy of college algebra students (Unpublished doctoral dissertation). Utah State University, Logan. Retrieved from http://digitalcommons.usu.edu/etd/407/
  • Christenson, S. L., Reschly, A. L., & Wylie, C. (2012). Handbook of research on student engagement. New York, NY: Springer.
  • Chubin, D. E., May, G. S., & Babco, E. L. (2005). Diversifying the engineering workforce. Journal of Engineering Education, 94, 73–86. doi:10.1002/j.2168-9830.2005.tb00830.x
  • Crippen, K. J., & Earl, B. L. (2007). The impact of web-based worked examples and self-explanation on performance, problem solving, and self-efficacy. Computers & Education, 49, 809–821. doi:10.1016/j.compedu.2005.11.018
  • Dweck, C. S. (1975). The role of expectations and attributions in the alleviation of learned helplessness. Journal of Personality and Social Psychology, 31, 674–685. doi:10.1037/h0077149
  • Dweck, C. S., & Master, A. (2009). Self-theories and motivation: Students’ beliefs about intelligence. In K. R. Wentzel & A. Wigfield (Eds.), Handbook of motivation at school (pp. 123–140). New York, NY: Routledge.
  • Eccles, J. S. (2007). Where are all the women? Gender differences in participation in physical science and engineering. In S. J. Ceci & W. M. Williams (Eds.), Why aren't more women in science? Top researchers debate the evidence (pp. 199–210). Washington, DC: American Psychological Association.
  • Eccles, J. S., Wigfield, A., & Schiefele, U. (1998). Motivation to succeed. In W. Damon ( Series Ed.) & N. Eisenberg ( Volume Eds.), Handbook of child psychology (5th ed., Vol. III, pp. 1017–1095). New York, NY: Wiley.
  • Falco, L. D., Summers, J. J., & Bauman, S. (2010). Encouraging mathematics participation through improved self-efficacy: A school counseling outcomes study. Educational Research and Evaluation, 16, 529–549. doi:10.1080/13803611.2011.555101
  • Feng, S. L., & Tuan, H. L. (2005). Using ARCS model to promote 11th graders' motivation and achievement in learning about acids and bases. International Journal of Science and Mathematics Education, 3, 463–484. doi:10.1007/s10763-004-6828-7
  • Forsterling, F. (1985). Attributional retraining: A review. Psychological Bulletin, 98, 495–512. doi:10.1037//0033-2909.98.3.495
  • Frenzel, A. C., Goetz, T., Pekrun, R., & Watt, H. M. (2010). Development of mathematics interest in adolescence: Influences of gender, family, and school context. Journal of Research on Adolescence, 20, 507–537. doi:10.1111/j.1532-7795.2010.00645.x
  • Gaspard, H., Dicke, A., Flunger, B., Brisson, B., Hafner, I., Nagengast, B., & Trautwein, U. (2015). Fostering adolescents’ value beliefs for mathematics with a relevance intervention in the classroom. Developmental Psychology, 51, 1226–1240. doi:10.1037/dev0000028
  • Greer, B. R. (2009). The effects of different types of prompts on achievement and attitude in mathematics (Unpublished doctoral dissertation). San Diego State University and University of San Diego, San Diego, CA.
  • Guthrie, J. T., Klauda, S., & Morrison, D. (2012). Motivation, achievement, and classroom contexts for information book reading. In J. T. Guthrie, A. Wigfield, & S. L. Klauda (Eds.), Adolescents' engagement in academic literacy (pp. 1–51). Retreived from http://www.cori.umd.edu/research-publications/2012_adolescents_engagement_ebook.pdf
  • Guthrie, J. T., & Wigfield, A. (2000). Engagement and motivation in reading. In M. Kamil & P. Mosenthal (Eds.), Handbook of reading research (Vol. 3, pp. 403–422). Mahwah, NJ: Erlbaum.
  • Hall, C., Dickerson, J., Batts, D., Kauffmann, P., & Bosse, M. (2011). Are we missing opportunities to encourage interest in STEM fields? Journal of Technology Education, 23(1), 32–46.
  • Harackiewicz, J. M., Canning, E. A., Tibbetts, Y., Giffen, C. J., Blair, S. S., Rouse, D. I., & Hyde, J. S. (2014). Closing the social class achievement gap for first-generation students in undergraduate biology. Journal of Educational Psychology, 106, 375–389. doi:10.1037/a0034679
  • Harackiewicz, J. M., Canning, E. A., Tibbetts, Y., Priniski, S. J., & Hyde, J. S. (2015). Closing achievement gaps with a utility-value intervention: Disentangling race and social class. Journal of Personality and Social Psychology. Advance online publication. doi:10.1037/pspp0000075.
  • Harackiewicz, J. M., Rozek, C. S., Hulleman, C. S., & Hyde, J. S. (2012). Helping parents to motivate adolescents in mathematics and science: An experimental test of a utility-value intervention. Psychological Science, 23, 899–906. doi:10.1177/0956797611435530
  • Haussler, P., & Hoffmann, L. (2002). An intervention study to enhance girls' interest, self-concept, and achievement in physics classes. Journal of Research in Science Teaching, 39, 870–888. doi:10.1002/tea.10048
  • Hidi, S., & Renninger, K. A. (2006). The four-phase model of interest development. Educational Psychologist, 41, 111–127. doi:10.1207/s15326985ep4102_4
  • Hiller, S. E., & Kitsantas, A. (2014). The effect of a horseshoe crab citizen science program on middle school student science performance and stem career motivation. School Science and Mathematics, 114, 302–311. doi:10.1111/ssm.12081
  • Hodges, C. (2008). Self-efficacy, motivational email, and achievement in an asynchronous math course. Journal of Computers in Mathematics and Science Teaching, 27(3), 265–285.
  • Holmes, J. A. (2003). Museum-based learning: Informal learning settings and their role in student motivation and achievement in science (Doctoral dissertation). Available from ProQuest Dissertations and Theses database. (UMI No. 3084538)
  • Hong, H. Y., & Lin-Siegler, X. (2012). How learning about scientists’ struggles influences students’ interest and learning in physics. Journal of Educational Psychology, 104, 469–484. doi:10.1037/a0026224
  • Hood, M., & Neumann, D. L. (2013). Evaluation of a workshop to reduce negative perceptions of statistics in undergraduate psychology students. Psychology Learning & Teaching, 12, 115–125. doi:10.2304/plat.2013.12.2.115
  • Huett, J. B., Kalinowski, K. E., Moller, L., & Huett, K. C. (2008). Improving the motivation and retention of online students through the use of arcs-based e-mails. American Journal of Distance Education, 22, 159–176. doi:10.1080/08923640802224451
  • Hulleman, C. S., & Harackiewicz, J. M. (2009). Promoting interest and performance in high school science classes. Science, 326(5958), 1410–1412. doi:10.1126/science.1177067
  • Isiksal, M., & Askar, P. (2005). The effect of spreadsheet and dynamic geometry software on the achievement and self-efficacy of 7th-grade students. Educational Research, 47, 333–350. doi:10.1080/00131880500287815
  • Kaplan, A., Katz, I. & Flum, H. (2012). Motivation theory in educational practice: Knowledge claims, challenges, and future directions. In K. R. Harris, S. Graham, & T. Urdan (Eds.), Educational psychology handbook: Vol. 2: Individual differences in cultural and contextual factors (pp. 165–194). Washington, DC: American Psychological Association.
  • Karabenick, S. A., & Urdan, T. C. (2014). Advances in motivation and achievement (Vol. 18: Motivational interventions). Bingley, UK: Emerald.
  • Kebritchi, M., Hirumi, A., & Bai, H. (2010). The effects of modern mathematics computer games on mathematics achievement and class motivation. Computers & Education, 55, 427–443. doi:10.1016/j.compedu.2010.02.007
  • Keller, J. M. (1987a). Development and use of the ARCS model of instructional design. Journal of Instructional Development, 10(3), 2–10. doi:10.1007/bf02905780
  • Keller, J. M. (1987b). Strategies for stimulating the motivation to learn. Performance and Instruction, 26(8), 1–7. doi:10.1002/pfi.4160260802
  • Ketelhut, D. J., Nelson, B. C., Clarke, J., & Dede, C. (2010). A multi-user virtual environment for building and assessing higher order inquiry skills in science. British Journal of Educational Technology, 41(1), 56–68. doi:10.1111/j.1467-8535.2009.01036.x
  • Kim, C., & Hodges, C. B. (2012). Effects of an emotion control treatment on academic emotions, motivation and achievement in an online mathematics course. Instructional Science, 40, 173–192.
  • Kim, Y., Baylor, A. L., & Shen, E. (2007). Pedagogical agents as learning companions: The impact of agent emotion and gender. Journal of Computer Assisted Learning, 23, 220–234. doi:10.1111/j.1365-2729.2006.00210.x
  • Kitsantas, A., Reiser, A. R., & Doster, J. (2004). Developing self-regulated learners: Goal setting, self-evaluation, and organizational signals during acquisition of procedural skills. The Journal of Experimental Education, 72, 269–287. doi:10.3200/jexe.72.4.269-287
  • Ladd, G. W., Herald-Brown, S. L., & Kochel, K. P. (2009). Peers and motivation. In K. R. Wenzel & A. Wigfield (Eds.), Handbook of motivation at school (pp. 323–348). New York, NY: Routledge/Taylor & Francis Group.
  • Lazowski, R. A., & Hulleman, C. S. (2015). Motivation interventions in education: A meta-analytic review. Review of Educational Research. Advance online publication. doi:10.3102/0034654315617832
  • Maehr, M. L., & Midgley, C. (1996). Transforming school cultures. Boulder, CO: Westview Press.
  • Maehr, M. L., & Zusho, A. (2009). Achievement goal theory: Past, present, and future. In K. R. Wentzel & A. Wigfield (Eds.), Handbook of motivation at school (pp. 77–104). New York, NY: Routledge.
  • Maltese, A. V., & Tai, R. H. (2011). Pipeline persistence: Examining the association of educational experiences with earned degrees in STEM among US students. Science Education, 95, 877–907. doi:10.1002/sce.20441
  • Marsh, H. W. (1990). A multidimensional, hierarchical model of self-concept: Theoretical and empirical justification. Educational Psychology Review, 2, 77–172. doi:10.1007/bf01322177
  • Martinez, M. E. (1992). Interest enhancements to science experiments: Interactions with student gender. Journal of Research in Science Teaching, 29, 167–177. doi:10.1002/tea.3660290206
  • Moote, J. K., Williams, J. M., & Sproule, J. (2013). When students take control: Investigating the impact of the crest inquiry-based learning program on self-regulated processes and related motivations in young science students. Journal of Cognitive Education and Psychology, 12, 178–196. doi:10.1891/1945-8959.12.2.178
  • Moreno, R., Mayer, R. E., Spires, H. A., & Lester, J. C. (2001). The case for social agency in computer-based teaching: Do students learn more deeply when they interact with animated pedagogical agents? Cognition and Instruction, 19, 177–213. doi:10.1207/s1532690xci1902_02
  • Muis, K. R., Ranellucci, J., Franco, G. M., & Crippen, K. J. (2013). The interactive effects of personal achievement goals and performance feedback in an undergraduate science class. The Journal of Experimental Education, 81, 556–578. doi:10.1080/00220973.2012.738257
  • Musu-Gillette, L. E., Wigfield, A., Harring, J., & Eccles, J. S. (2015). Trajectories of change in student's self-concepts of ability and values in math and college major choice. Educational Research and Evaluation, 21, 343–370. doi:10.1080/13803611.2015.1057161
  • National Science and Technology Council. (2013). Federal science, technology, engineering, and mathematics (STEM) education: 5 year strategic plan. Retrieved from www.whitehouse.gov.
  • National Science Board. (2014). Science and engineering indicators 2014. Arlington, VA: National Science Foundation (NSB 14-01).
  • National Science Foundation. (2012). Science and engineering indicators 2012. Arlington, VA: Author. Retrieved from www.nsf.gov/statistics/seind12/
  • Nolen, S. B., & Ward, C. J. (2008). Sociocultural and situative research on motivation. In M. Maehr, S. Karabenick, & T. Urdan (Eds.), Advances in motivation and achievement (Vol. 15, pp. 428–460). London, UK: Emerald Group.
  • Okolo, C. M. (1992). The effects of computer-based attribution retraining on the attributions, persistence, and mathematics computation of students with learning disabilities. Journal of Learning Disabilities, 25, 327–334. doi:10.1177/002221949202500507
  • Pedersen, S., & Williams, D. (2004). A comparison of assessment practices and their effects on learning and motivation in a student-centered learning environment. Journal of Educational Multimedia and Hypermedia, 13, 283–306.
  • Plant, E., Baylor, A. L., Doerr, C. E., & Rosenberg-Kima, R. B. (2009). Changing middle-school students’ attitudes and performance regarding engineering with computer-based social models. Computers & Education, 53, 209–215. doi:10.1016/j.compedu.2009.01.013
  • Ramdass, D., & Zimmerman, B. J. (2008). Effects of self-correction strategy training on middle school students' self-efficacy, self-evaluation, and mathematics division learning. Journal of Advanced Academics, 20(1), 18–41.
  • Robertson, J. (2012). Self-efficacy and collaborative learning: An intervention study (Doctoral dissertation). Available from ProQuest Dissertations and Theses database. (UMI No. 3526178)
  • Roeser, R. W., & Eccles, J. S. (1998). Adolescents' perceptions of middle school: Relation to longitudinal changes in academic and psychological adjustment. Journal of Research on Adolescence, 8(1), 123–158. doi:10.1207/s15327795jra0801_6
  • Roeser, R. W., Urdan, T. C., & Stephens, J. M. (2009). School as a context of student motivation and achievement. In K. R. Wentzel & A. Wigfield (Eds.), Handbook of motivation at school (pp. 381–410). New York, NY: Routledge
  • Rosenberg-Kima, R. B., Baylor, A. L., Plant, E. A., & Doerr, C. E. (2008). Interface agents as social models for female students: The effects of agent visual presence and appearance on female students’ attitudes and beliefs. Computers in Human Behavior, 24, 2741–2756. doi:10.1016/j.chb.2008.03.017
  • Rozek, C. S., Hyde, J. S., Svoboda, R. C., Hulleman, C. S., & Harackiewicz, J. M. (2015). Gender differences in the effects of a utility-value intervention to help parents motivate adolescents in mathematics and science. Journal of Educational Psychology, 107, 195–206. doi:10.1037/a0036981
  • Ryan, R. M., & Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology, 25(1), 54–67. doi:10.1006/ceps.1999.1020
  • Schunk, D. H. (1985). Participation in goal setting: Effects on self-efficacy and skills of learning-disabled children. The Journal of Special Education, 19, 307–317. doi:10.1177/002246698501900307
  • Schunk, D. H., & Cox, P. D. (1986). Strategy training and attributional feedback with learning disabled students. Journal of Educational Psychology, 78, 201. doi:10.1037/0022-0663.78.3.201
  • Schunk, D. H., & Ertmer, P. A. (1999). Self-regulatory processes during computer skill acquisition: Goal and self-evaluative influences. Journal of Educational Psychology, 91, 251–260. doi:10.1037//0022-0663.91.2.251
  • Shachar, H., & Fischer, S. (2004). Cooperative learning and the achievement of motivation and perceptions of students in 11th grade chemistry classes. Learning and Instruction, 14(1), 69–87. doi:10.1016/j.learninstruc.2003.10.003
  • Shen, E. (2009). The effects of agent emotional support and cognitive motivational messages on math anxiety, learning, and motivation (Doctoral dissertation). Available from ProQuest Dissertations and Theses database. (UMI No. 3385306)
  • Skinner, E. A., Kindermann, T. A., Connell, J. P., & Wellborn, J. G. (2009). Engagement and disaffection as organizational constructs in the dynamics of motivational development. In K. R. Wentzel & A. Wigfield (Eds.), Handbook of motivation at school (pp. 223–245). New York, NY: Routledge.
  • Song, S. H., & Keller, J. M. (2001). Effectiveness of motivationally adaptive computer-assisted instruction on the dynamic aspects of motivation. Educational Technology Research and Development, 49(2), 5–22. doi:10.1007/bf02504925
  • Star, J., Chen, J. A., Taylor, M. W., Durkin, K., Dede, C., & Chao, T. (2014). Evaluating technology-based strategies for enhancing motivation in mathematics. International Journal of STEM Education, 1(7), 1–19. doi:10.1007/978-3-319-20276-1_13
  • Steele, C. M. (1997). A threat in the air: How stereotypes shape intellectual identity and performance. American Psychologist, 52, 613–629. doi:10.1037/0003-066x.52.6.613
  • Thomas, J. W., Bol, L., & Warkentin, R. W. (1991). Antecedents of college students' study deficiencies: The relationship between course features and students' study activities. Higher Education, 22, 275–296. doi:10.1007/bf00132292
  • Turner, S. A. (2011). The effects of a constructivist-based fraction intervention on the achievement and self-efficacy beliefs of low socio-economic status students (Doctoral dissertation). Retrieved from http://gradworks.umi.com/35/00/3500450.html
  • Urdan, T., & Turner, J. C. (2005). Competence motivation in the classroom. In A. Elliot & C. Dweck (Eds.), Handbook of competence and motivation (pp. 297–317). New York, NY: Guilford Press.
  • van der Meij, H. (2013). Do pedagogical agents enhance software training? Human–Computer Interaction, 28, 518–547. doi:10.1080/073700-24.2013.789348
  • Wang, M. T., & Eccles, J. S. (2013). School context, achievement motivation, and academic engagement: A longitudinal study of school engagement using a multidimensional perspective. Learning and Instruction, 28, 12–23. doi:10.1016/j.learninstruc.2013.04.002
  • Wang, M. T., Eccles, J. S., & Kenny, S. (2013). Not lack of ability but more choice: Individual and gender differences in choice of careers in science, technology, engineering, and mathematics. Psychological Science, 24, 770–775. doi:10.1177/0956797612458937
  • Weiner, B. (1985). An attributional theory of achievement motivation and emotion. Psychological Review, 92, 548–573. doi:10.1037//0033-295x.92.4.548
  • Weisgram, E. S., & Bigler, R. S. (2006). Girls and science careers: The role of altruistic values and attitudes about scientific tasks. Journal of Applied Developmental Psychology, 27, 326–348. doi:10.1016/j.appdev.2006.04.004
  • Weisgram, E. S., & Bigler, R. S. (2007). Effects of learning about gender discrimination on adolescent girls’ attitudes toward and interest in science. Psychology of Women Quarterly, 31, 262–269. doi:10.1111/j.1471-6402.2007.00369.x
  • Wentzel, K. R. (2009). Students’ relationships with teachers as motivational contexts. In K. R. Wentzel & A. Wigfield (Eds.), Handbook of motivation at school (pp. 301–322). New York, NY: Routledge.
  • Wentzel, K. R., & Wigfield, A. (2007). Motivational interventions that work: Themes and remaining issues. Educational Psychologist, 42, 261–271. doi:10.1080/00461520701621103
  • Wentzel, K., & Wigfield, A. (2009). Handbook of motivation at school. New York, NY: Routledge.
  • Wigfield, A., & Eccles, J. S. (2000). Expectancy–value theory of achievement motivation. Contemporary Educational Psychology, 25(1), 68–81. doi:10.1006/ceps.1999.1015
  • Wigfield, A, Eccles, J. S., Fredricks, J., Simpkins, Roeser R., & Schiefele, U. (2015). Development of achievement motivation and engagement. In R. Lerner ( Series ed.), M. Lamb, & C. Garcia Coll ( Vol. Eds.), Handbook of child psychology and developmental science (7th ed., Vol. 3, pp. 657–700). New York, NY: Wiley.
  • Wigfield, A., Eccles, J. S., Schiefele, U., Roeser, R., & Davis-Kean, P. (2006). Development of achievement motivation. In W. Damon & N. Eisenberg (Eds.), Handbook of child psychology (6th ed., Vol. 3, pp. 933–1002). New York, NY: Wiley.
  • Wimpey, A. D. (2010). Teaching challenged-based curriculum in a statistics classroom: The effect on motivation orientation for regular and special education students (Doctoral dissertation). Available from ProQuest Dissertations and Theses database. (UMI No. 3397597)
  • Wolters, C. A., & Pintrich, P. R. (1998). Contextual differences in student motivation and self-regulated learning in mathematics, English, and social studies classrooms. Instructional Science, 26(1–2), 27–47. doi:10.1007/978-94-017-2243-8_6
  • Wyss, V. L., Heulskamp, D., & Siebert, C. J. (2012). Increasing middle school student interest in STEM careers with videos of scientists. International Journal of Environmental & Science Education, 7(4), 501–522.
  • Yeager, D. S., & Walton, G. M. (2011). Social-psychological interventions in education: They're not magic. Review of Educational Research, 81(2), 267–301. doi:10.3102/0034654311405999
  • Ziegler, A., & Heller, K. A. (2000). Effects of an attribution retraining with female students gifted in physics. Journal for the Education of the Gifted, 23, 217–243.
  • Zimmerman, B. J. (2011). Motivational sources and outcomes of self-regulated learning and performance. In B. J. Zimmerman & D. Schunk (Eds.), Handbook of self-regulation of learning and performance (pp. 49–64). New York, NY: Routledge.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.