Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 32, 2002 - Issue 6
36
Views
12
CrossRef citations to date
0
Altmetric
Research Article

19 F-NMR and directly coupled 19 F/ 1 H-HPLC-NMR spectroscopic investigations of the metabolism of the model ecotoxin 3-trifluoromethylaniline in the earthworm species Eisenia veneta

, , , &
Pages 535-546 | Published online: 22 Sep 2008

References

  • AKITT, J. W., 1992, NMR and Chemistry: An Introduction to Modern NMR Spectroscopy, 3rd edn (London: Chapman & Hall).
  • BAILEY, N. J. C., COOPER, P., HADELD, S. T., LENZ, E. M., LINDON, J. C., NICHOLSON, J. K., STANLEY, P. D., WILSON, I. D., WRIGHT, B. and TAYLOR, S., 2000, Application of directly coupled HPLC-NMR-MS/MS to the identification of metabolites of 5-trifluoro-methylpyridone (2-hydroxy-5-trifluoromethylpyridine) in hydroponically grown plants. Journal of Agriculture and Food Chemistry, 48, 42–46.
  • BELFROID, A., SEINEN, W., VAN GESTEL, K. and HERMENS, J., 1993, The acute toxicity of chlorobenzenes for earthworms (Eisenia andrei) in different exposure systems. Chemosp here, 26, 2265–2277.
  • BELFROID, A., VAN DEN BERG, M., SEINE, N. W., HERMENS, J. and VAN OESTEL, K., 1995, Uptake, bioavailability and elimination of hydrophobic compounds in earthworms (Eisenia andrei) in field-contaminated soil. Environmental Toxicology and Chemistry, 14, 605–612.
  • BUNDY, J. G., LENZ, E. M., OSBORN, D., WEEKS, J. M., LINDON, J. C. and NICHOLSON, J. K., 2001, Metabolism of 4-fluoroaniline and 4-fluorobiphenyl in the earthworm Eisenia veneta characterized by NMR spectroscopy, HPLC-NMR, and HPLC-M S. Xenobiotica, 32, 479–490.
  • CHRISTENSEN, O. M. and MATHER, J. G., 1994, Earthworms as Ecotoxicological Test-Organisms. No. 5 (Copenhagen: Danish Environmental Protection Agency, Ministry of the Environment).
  • EADSFORTH, C. V., COVENEY, P. C., HUTSON, D. H., LOGAN, C. J. and SAMUEL, A. J., 1986, The metabolism of o-fluoroaniline by rats, rabbits and marmosets. Xenobiotica, 16, 555–566.
  • EHLHARDT, W. J. and HOWBERT, J. J., 1991, Metabolism and disposition of p-chloro-aniline in rat, mouse and monkey. Drug Metabolism and Disposition, 19, 366–369.
  • HAIMI, J., SALMINEN, J., HUHTA, V., KNUUTINEN, J. and PALM, H., 1992, Bioaccumulation of organochlorine compounds in earthworms. Soil Biology and Biochemistry, 24, 1699–1703.
  • KIESE, M. and LENK, W., 1971, Metabolites of 4- chloroaniline and chloroacetanilides produced by rabbits and pigs. Biochemistry and. Pharmacology, 20, 379–391.
  • LENZ, E. M., LINDON, J. C., NICHOLSON, J. K., WEEKS, J. M. and OSBORN, D., 2001, 19F-NMR spectroscopic investigation into the absorption and metabolism of the model ecotoxin, 3-trifluoromethylaniline, in Eisenia veneta. Ecotoxicology and Environmental Safety (submitted).
  • LINDON, J. C., 1995, Fluorine nuclear magnetic resonance. In Encyclopedia of Analytical Science (London: Academic Press), p. 3408.
  • LINDON, J. C., NICHOLSON, J. K. and WILSON, I. D., 2000. Directly coupled HPLC-NMR and HPLC-NNIR-M S in pharmaceutical research and development. Journal of Chromatography B, 748, 233–258.
  • OECD, 1984, Earthworm, Acute Toxicity Tests. Guideline for Testing of Chemicals, No. 7 (Paris: Organization for Economic Co-operation and Development).
  • RADOMSKI, J. L., 1979, The primary aromatic amines: their biological properties and structure—activity relationships. Annual Review in Pharmacology and Toxicology, 19, 129–157.
  • RIETJENS, I. M. C. M. and VERVOORT, J., 1989, Microsomal metabolism of fluoro-anilines. Xenobiotica, 19, 1297–1305.
  • SCARFE, G. B., CLAYTON, E., WILSON, I. D. and NICHOLSON, J. K., 2000, Identification and quantification of metabolites of 2,3,5,6-tetrafluoro-4-trifluoromethylaniline in rat urine using 19F-NMR spectroscopy, HPLC-NMR spectroscopy and HPLC-MS spectrometry. Journal of Chromatography B, 748, 311–319.
  • STENERSEN, J., BREKKE, E. and ENGELSTADT, F., 1992, Earthworms for toxicity testing; species differences in response towards cholinesterase inhibiting insecticides. Soil Biology and Biochemistry, 24, 1761–1764.
  • TUGNAIT, M., LENZ, E. M., PHILLIPS, P., HOFMANN, M., SPRAUL, M., LINDON, J. C., NICHOLSON, J. K. and WILSON, I. D., 2001, The metabolism of 4-trifluoromethoxyaniline and [13C]-4-trifluoromethoxyacetanilide in the rat: detection and identification of metabolites excreted in the urine by NMR and HPLC-NMR. Journal of Pharmaceutical and Biomedical Analysis (in press).
  • VAN OESTEL, C. A. M. and VAN DIS, W. A., 1988, The influence of soil characteristics on the toxicity of four chemicals to the earthworm Eisenia andrei. Biology and Fertility of Soils, 6, 262–265.
  • VAN OESTEL, C. A. M., DIRVEN-VAN BREMEN, E. M., BAERSELMAN, R., EMANS, H. J. B., JANNSEN, J. A. M., POSTUMA, R. and VAN VLIET, P. J. M., 1992, Comparison of sublethal and lethal criteria for nine different chemicals in standardized toxicity tests using the earthworm Eisenia andrei. Ecotoxkology and Environmental Safety, 23, 206–220.
  • VERVOORT, J., DE JAGER, P. A., STEENBERGEN, J. and RIETJENS, I. M. C. M., 1990, Development of a 19F-NIVIR method for studies on the in vivo and in vitro metabolism of 2-fluoroaniline. Xenobiotica, 20, 657–670.
  • VERVOORT, J., RIETJENS, I. M. C. M., MOONEN, C. T. W., VON KIENLIN, M. and DESPRES, D., 1991, Biotransformation of 2-fluoroaniline in rats by in vivo 19F -NMR. NMR in Biomedicine, 4, 255–261.
  • WADE, K. E., WILSON, I. D., TROKE, J. A. and NICHOLSON, J. K., 1990, 19F and 1H magnetic resonance strategies for metabolic studies on fluorinated xenobiotics: application to flurbiprofen [2-(2-fluoro-4-biphenylyl)propionic acid]. Journal of Pharmacological and Biomedical Analysis, 8, 401–410.
  • WARNE, M. A., LENZ, E., OSBORN, D., WEEKS, J. M. and NICHOLSON, J. K., 2000, An NMR-based metabonomic investigation of the toxic effects of 3-trifluoromethylaniline on the earthworm Eisenia veneta. Biomarkers, 5, 56–72.
  • WILSON, I. D., MACDONALD, C. M., FROMSON, J. M., TROKE, J. A. and HILLBECK, D., 1985, Species differences in the metabolism of 14C-p-trifluoromethyl aniline: production of an oxanilic acid as the major metabolite by the rat. Biochemical Pharmacology, 34, 2025–2028.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.